REFINED LEARNING DATA REPRESENTATION FOR CLASSIFIERS

In one embodiment, a learning machine device initializes thresholds of a data representation of one or more data features, the thresholds specifying a first number of pre-defined bins (e.g., uniform and equidistant bins). Next, adjacent bins of the pre-defined bins having substantially similar weigh...

Full description

Saved in:
Bibliographic Details
Main Authors Franc Vojtech, Bartos Karel, Sofka Michal
Format Patent
LanguageEnglish
Published 02.11.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In one embodiment, a learning machine device initializes thresholds of a data representation of one or more data features, the thresholds specifying a first number of pre-defined bins (e.g., uniform and equidistant bins). Next, adjacent bins of the pre-defined bins having substantially similar weights may be reciprocally merged, the merging resulting in a second number of refined bins that is less than the first number. Notably, while merging, the device also learns weights of a linear decision rule associated with the one or more data features. Accordingly, a data-driven representation for a data-driven classifier may be established based on the refined bins and learned weights.
AbstractList In one embodiment, a learning machine device initializes thresholds of a data representation of one or more data features, the thresholds specifying a first number of pre-defined bins (e.g., uniform and equidistant bins). Next, adjacent bins of the pre-defined bins having substantially similar weights may be reciprocally merged, the merging resulting in a second number of refined bins that is less than the first number. Notably, while merging, the device also learns weights of a linear decision rule associated with the one or more data features. Accordingly, a data-driven representation for a data-driven classifier may be established based on the refined bins and learned weights.
Author Franc Vojtech
Sofka Michal
Bartos Karel
Author_xml – fullname: Franc Vojtech
– fullname: Bartos Karel
– fullname: Sofka Michal
BookMark eNrjYmDJy89L5WQwCXJ18_RzdVHwcXUM8vP0c1dwcQxxVAhyDQhyDXb1C3EM8fT3U3DzD1Jw9nEMDvZ083QNCuZhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGhubGhmbGJkaOhsbEqQIAb5gqIA
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
ExternalDocumentID US2017316342A1
GroupedDBID EVB
ID FETCH-epo_espacenet_US2017316342A13
IEDL.DBID EVB
IngestDate Fri Jul 19 14:34:45 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_US2017316342A13
Notes Application Number: US201615143792
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20171102&DB=EPODOC&CC=US&NR=2017316342A1
ParticipantIDs epo_espacenet_US2017316342A1
PublicationCentury 2000
PublicationDate 20171102
PublicationDateYYYYMMDD 2017-11-02
PublicationDate_xml – month: 11
  year: 2017
  text: 20171102
  day: 02
PublicationDecade 2010
PublicationYear 2017
RelatedCompanies Cisco Technology, Inc
RelatedCompanies_xml – name: Cisco Technology, Inc
Score 3.1201756
Snippet In one embodiment, a learning machine device initializes thresholds of a data representation of one or more data features, the thresholds specifying a first...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
Title REFINED LEARNING DATA REPRESENTATION FOR CLASSIFIERS
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20171102&DB=EPODOC&locale=&CC=US&NR=2017316342A1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LaoNAcAjp89balj7SIrR4kxpd13iQYnRtLIkJakpuQY1CoZhQLf39jotpc8pxZ2GYnWWeOzML8JSsSE6VlMoGXq9MjGIlm-g2oLij8tM1SgvSNDhPAjqak7eFvujA57YXhs8J_eHDEVGiMpT3muvrzX8Sy-W1ldVz-oGg9YsXW67URsd9A62ZKrlDi82m7tSRHMeaR1IQ8j0NfQ-i2hgrHaAjbTQFYOx92PSlbHaNincGhzPEV9bn0MlLAU6c7d9rAhxP2idvAY54jWZWIbCVw-oCSMg8P2CuOGZ2GPjBq-jasS2GrGEoC2KeeBIxwBOdsY360vNZGF3Co8diZyQjIcu_cy_n0S7V2hV0y3WZX4NoFn09zQYKTUyNmIMiUXKqkyRXNU3JiEpuoLcP0-3-7Ts4bZa84U7tQbf--s7v0fLW6QNn2C97PX_6
link.rule.ids 230,309,783,888,25578,76884
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1dT8JArCH4gW-KGlTUJZq9LY7tdrAHYsZ2k-k4yBiGt2UbW2JiBpEZ_77dBZQnXtuk6fXSz2t7AI_xgmRUTajSxetVSDdfKCaGDajuaPwMndKcVAPOI06HM_I6N-Y1-NzOwog9oT9iOSJqVIr6Xgp7vfovYjmit3L9lHwgaPnshn1H3mTHnS56M012Bn02GTtjW7bt_mwq80DgdIw9iGZhrnSAQXav2rTP3gfVXMpq16m4p3A4QXpFeQa1rGhCw97-vdaE49HmybsJR6JHM10jcKOH63MgAXM9zhzJZ1bAPf4iOVZoSQGrBMp4KApPEiZ4ku1baC9djwXTC3hwWWgPFWQk-jt3NJvucq1fQr1YFlkLJDPvGEnaU2ls6sTs5bGaUYPEmabrako0cgXtfZSu96PvoTEMR37ke_ztBk4qlBi-09pQL7--s1v0wmVyJ4T3C6Pjguo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=REFINED+LEARNING+DATA+REPRESENTATION+FOR+CLASSIFIERS&rft.inventor=Franc+Vojtech&rft.inventor=Bartos+Karel&rft.inventor=Sofka+Michal&rft.date=2017-11-02&rft.externalDBID=A1&rft.externalDocID=US2017316342A1