REFINED LEARNING DATA REPRESENTATION FOR CLASSIFIERS
In one embodiment, a learning machine device initializes thresholds of a data representation of one or more data features, the thresholds specifying a first number of pre-defined bins (e.g., uniform and equidistant bins). Next, adjacent bins of the pre-defined bins having substantially similar weigh...
Saved in:
Main Authors | , , |
---|---|
Format | Patent |
Language | English |
Published |
02.11.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In one embodiment, a learning machine device initializes thresholds of a data representation of one or more data features, the thresholds specifying a first number of pre-defined bins (e.g., uniform and equidistant bins). Next, adjacent bins of the pre-defined bins having substantially similar weights may be reciprocally merged, the merging resulting in a second number of refined bins that is less than the first number. Notably, while merging, the device also learns weights of a linear decision rule associated with the one or more data features. Accordingly, a data-driven representation for a data-driven classifier may be established based on the refined bins and learned weights. |
---|---|
AbstractList | In one embodiment, a learning machine device initializes thresholds of a data representation of one or more data features, the thresholds specifying a first number of pre-defined bins (e.g., uniform and equidistant bins). Next, adjacent bins of the pre-defined bins having substantially similar weights may be reciprocally merged, the merging resulting in a second number of refined bins that is less than the first number. Notably, while merging, the device also learns weights of a linear decision rule associated with the one or more data features. Accordingly, a data-driven representation for a data-driven classifier may be established based on the refined bins and learned weights. |
Author | Franc Vojtech Sofka Michal Bartos Karel |
Author_xml | – fullname: Franc Vojtech – fullname: Bartos Karel – fullname: Sofka Michal |
BookMark | eNrjYmDJy89L5WQwCXJ18_RzdVHwcXUM8vP0c1dwcQxxVAhyDQhyDXb1C3EM8fT3U3DzD1Jw9nEMDvZ083QNCuZhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGhubGhmbGJkaOhsbEqQIAb5gqIA |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
ExternalDocumentID | US2017316342A1 |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_US2017316342A13 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 14:34:45 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_US2017316342A13 |
Notes | Application Number: US201615143792 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20171102&DB=EPODOC&CC=US&NR=2017316342A1 |
ParticipantIDs | epo_espacenet_US2017316342A1 |
PublicationCentury | 2000 |
PublicationDate | 20171102 |
PublicationDateYYYYMMDD | 2017-11-02 |
PublicationDate_xml | – month: 11 year: 2017 text: 20171102 day: 02 |
PublicationDecade | 2010 |
PublicationYear | 2017 |
RelatedCompanies | Cisco Technology, Inc |
RelatedCompanies_xml | – name: Cisco Technology, Inc |
Score | 3.1201756 |
Snippet | In one embodiment, a learning machine device initializes thresholds of a data representation of one or more data features, the thresholds specifying a first... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
Title | REFINED LEARNING DATA REPRESENTATION FOR CLASSIFIERS |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20171102&DB=EPODOC&locale=&CC=US&NR=2017316342A1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LaoNAcAjp89balj7SIrR4kxpd13iQYnRtLIkJakpuQY1CoZhQLf39jotpc8pxZ2GYnWWeOzML8JSsSE6VlMoGXq9MjGIlm-g2oLij8tM1SgvSNDhPAjqak7eFvujA57YXhs8J_eHDEVGiMpT3muvrzX8Sy-W1ldVz-oGg9YsXW67URsd9A62ZKrlDi82m7tSRHMeaR1IQ8j0NfQ-i2hgrHaAjbTQFYOx92PSlbHaNincGhzPEV9bn0MlLAU6c7d9rAhxP2idvAY54jWZWIbCVw-oCSMg8P2CuOGZ2GPjBq-jasS2GrGEoC2KeeBIxwBOdsY360vNZGF3Co8diZyQjIcu_cy_n0S7V2hV0y3WZX4NoFn09zQYKTUyNmIMiUXKqkyRXNU3JiEpuoLcP0-3-7Ts4bZa84U7tQbf--s7v0fLW6QNn2C97PX_6 |
link.rule.ids | 230,309,783,888,25578,76884 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1dT8JArCH4gW-KGlTUJZq9LY7tdrAHYsZ2k-k4yBiGt2UbW2JiBpEZ_77dBZQnXtuk6fXSz2t7AI_xgmRUTajSxetVSDdfKCaGDajuaPwMndKcVAPOI06HM_I6N-Y1-NzOwog9oT9iOSJqVIr6Xgp7vfovYjmit3L9lHwgaPnshn1H3mTHnS56M012Bn02GTtjW7bt_mwq80DgdIw9iGZhrnSAQXav2rTP3gfVXMpq16m4p3A4QXpFeQa1rGhCw97-vdaE49HmybsJR6JHM10jcKOH63MgAXM9zhzJZ1bAPf4iOVZoSQGrBMp4KApPEiZ4ku1baC9djwXTC3hwWWgPFWQk-jt3NJvucq1fQr1YFlkLJDPvGEnaU2ls6sTs5bGaUYPEmabrako0cgXtfZSu96PvoTEMR37ke_ztBk4qlBi-09pQL7--s1v0wmVyJ4T3C6Pjguo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=REFINED+LEARNING+DATA+REPRESENTATION+FOR+CLASSIFIERS&rft.inventor=Franc+Vojtech&rft.inventor=Bartos+Karel&rft.inventor=Sofka+Michal&rft.date=2017-11-02&rft.externalDBID=A1&rft.externalDocID=US2017316342A1 |