MALWARE ANALYSIS AND DETECTION USING GRAPH-BASED CHARACTERIZATION AND MACHINE LEARNING

Malware detection methods systems, and apparatus are described. Malware may be detected by obtaining a plurality of malware binary executables and a plurality of goodware binary executables, decompiling the plurality of malware binary executables and the plurality of goodware binary executable to ex...

Full description

Saved in:
Bibliographic Details
Main Author CAVAZOS JOHN
Format Patent
LanguageEnglish
Published 09.03.2017
Subjects
Online AccessGet full text

Cover

Abstract Malware detection methods systems, and apparatus are described. Malware may be detected by obtaining a plurality of malware binary executables and a plurality of goodware binary executables, decompiling the plurality of malware binary executables and the plurality of goodware binary executable to extract corresponding assembly code for each of the plurality of malware binary executables and the plurality of goodware binary executable, constructing call graphs for each of the plurality of malware binary executables and the plurality of goodware binary executables from the corresponding assembly code, determining similarities between the call graphs using graph kernels applied to the call graphs for each of the plurality of malware binary executables and the plurality of goodware binary executables, building a malware detection model from the determined similarities between call graphs by applying a machine learning algorithm such as a deep neural network (DNN) algorithm to the determined similarities, and identifying whether a subject executable is malware by applying the built malware detection model to the subject executable.
AbstractList Malware detection methods systems, and apparatus are described. Malware may be detected by obtaining a plurality of malware binary executables and a plurality of goodware binary executables, decompiling the plurality of malware binary executables and the plurality of goodware binary executable to extract corresponding assembly code for each of the plurality of malware binary executables and the plurality of goodware binary executable, constructing call graphs for each of the plurality of malware binary executables and the plurality of goodware binary executables from the corresponding assembly code, determining similarities between the call graphs using graph kernels applied to the call graphs for each of the plurality of malware binary executables and the plurality of goodware binary executables, building a malware detection model from the determined similarities between call graphs by applying a machine learning algorithm such as a deep neural network (DNN) algorithm to the determined similarities, and identifying whether a subject executable is malware by applying the built malware detection model to the subject executable.
Author CAVAZOS JOHN
Author_xml – fullname: CAVAZOS JOHN
BookMark eNrjYmDJy89L5WQI83X0CXcMclVw9HP0iQz2DAYyXBRcXENcnUM8_f0UQoM9_dwV3IMcAzx0nRyDXV0UnD0cgxydQ1yDPKMcwUpAGnwdnT08_VwVfFwdg_yAOngYWNMSc4pTeaE0N4Oym2uIs4duakF-fGpxQWJyal5qSXxosJGBobmBmYWFoZmjoTFxqgCAkDND
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
ExternalDocumentID US2017068816A1
GroupedDBID EVB
ID FETCH-epo_espacenet_US2017068816A13
IEDL.DBID EVB
IngestDate Fri Jul 19 15:16:00 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_US2017068816A13
Notes Application Number: US201615256883
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20170309&DB=EPODOC&CC=US&NR=2017068816A1
ParticipantIDs epo_espacenet_US2017068816A1
PublicationCentury 2000
PublicationDate 20170309
PublicationDateYYYYMMDD 2017-03-09
PublicationDate_xml – month: 03
  year: 2017
  text: 20170309
  day: 09
PublicationDecade 2010
PublicationYear 2017
RelatedCompanies UNIVERSITY OF DELAWARE
CAVAZOS JOHN
RelatedCompanies_xml – name: CAVAZOS JOHN
– name: UNIVERSITY OF DELAWARE
Score 3.0068755
Snippet Malware detection methods systems, and apparatus are described. Malware may be detected by obtaining a plurality of malware binary executables and a plurality...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
Title MALWARE ANALYSIS AND DETECTION USING GRAPH-BASED CHARACTERIZATION AND MACHINE LEARNING
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20170309&DB=EPODOC&locale=&CC=US&NR=2017068816A1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1dT8Iw8ELw801R4weaJZq9Lab7KO0DMaUrDMMG2QDRF7KvBxMziMz49-0qKE-8NG0vd2mbXnt3vbsCPNgkJtSMqeG0qGnYOEFGTJxMFiRLWwTFNK0M-n6AvYn9PHNmNfjYxMKoPKHfKjmi5KhU8nupzuvlvxHLVb6Vq8fkXXYtnrrjtquvtWNU7V-qu522GA3dIdc5b08iPQh_YZgQhJnUlfZMx8IVG4tpp4pLWW5fKt0T2B9JekV5CrW8aMAR3_y91oBDf_3k3YAD5aOZrmTnmg9XZzD12eCFhUJjARu8Rv1IVlzNFWOhfEK06jONntYL2cgzOiwSrsY9FjIuZdf-m7JKKQSfca8fCG0gWBhIjHO474ox9ww51Pnfyswn0fa8rAuoF4sivwQNoyRGWWolyJYiA8IkziyTYpQRO6UWxlfQ3EXpejf4Bo6rpnLFok2ol59f-a28m8vkTi3pD-O9iWE
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1dT8Iw8ELwA98UNX6gLtHsbTFlo7QPxJSusOk2yDYQfSH74MHEAJEZ_75dBfWJl6bp5S7tpdfeXe-uAHcWSQhtJtRotWnTsHCKjIS0ctmQPGsTlNCsdOj7AXZG1uOkNanA-yYXRtUJ_VLFEaVEZVLeC3VeL_-cWLaKrVzdp29yaPHQizu2vraOUbl_qW53O2I4sAdc57wzivQg_IFhQhBm0lbakUcAUWbbuFvmpSz_Xyq9Q9gdSnrz4ggqs3kdanzz91od9v31k3cd9lSMZraSg2s5XB3D2GfeMwuFxgLmvURuJDu2ZotYqJgQrfxMo6_1QzZ0jC6LhK1xh4WMS93VfVVeKYXgM-64gdA8wcJAYpzAbU_E3DHkVKe_nJmOov_rMk-hOl_MZ2egYZQmKM_MFFlSZUCYJLnZpBjlxMqoifE5NLZRutgOvoGaE_ve1HODp0s4KEEqLIs2oFp8fM6u5D1dpNeKvd-HdYxY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=MALWARE+ANALYSIS+AND+DETECTION+USING+GRAPH-BASED+CHARACTERIZATION+AND+MACHINE+LEARNING&rft.inventor=CAVAZOS+JOHN&rft.date=2017-03-09&rft.externalDBID=A1&rft.externalDocID=US2017068816A1