Fraud detection using emotion-based deep learning model

Techniques are described for determining a likelihood that a customer communication is fraudulent using one or more machine learning models. For example, a computing system includes a memory and one or more processors in communication with the memory. The one or more processors are configured to: re...

Full description

Saved in:
Bibliographic Details
Main Authors Kumar, Abhishek, Kosheleva-Coates, Julia A, Agarwal, Amit, Deb, Dipanjan, Yeri, Naveen Gururaja
Format Patent
LanguageEnglish
Published 11.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Techniques are described for determining a likelihood that a customer communication is fraudulent using one or more machine learning models. For example, a computing system includes a memory and one or more processors in communication with the memory. The one or more processors are configured to: receive a set of emotion factor values for communication data of a current communication associated with a customer, wherein each emotion factor value indicates a measure of a particular emotion factor in the current communication; classify, using an emotion variance model running on the one or more processors, the current communication into an emotional fraud category based on the set of emotion factor values for the current communication associated with the customer; and determine a risk score for the current communication indicative of a probability that the current communication is fraudulent based on at least the emotional fraud category for the current communication.
AbstractList Techniques are described for determining a likelihood that a customer communication is fraudulent using one or more machine learning models. For example, a computing system includes a memory and one or more processors in communication with the memory. The one or more processors are configured to: receive a set of emotion factor values for communication data of a current communication associated with a customer, wherein each emotion factor value indicates a measure of a particular emotion factor in the current communication; classify, using an emotion variance model running on the one or more processors, the current communication into an emotional fraud category based on the set of emotion factor values for the current communication associated with the customer; and determine a risk score for the current communication indicative of a probability that the current communication is fraudulent based on at least the emotional fraud category for the current communication.
Author Deb, Dipanjan
Agarwal, Amit
Kosheleva-Coates, Julia A
Kumar, Abhishek
Yeri, Naveen Gururaja
Author_xml – fullname: Kumar, Abhishek
– fullname: Kosheleva-Coates, Julia A
– fullname: Agarwal, Amit
– fullname: Deb, Dipanjan
– fullname: Yeri, Naveen Gururaja
BookMark eNrjYmDJy89L5WQwdytKLE1RSEktSU0uyczPUygtzsxLV0jNzQfxdJMSi1NBsqkFCjmpiUV5ILnc_JTUHB4G1rTEnOJUXijNzaDo5hri7KGbWpAfn1pckJicmpdaEh8abGhkYGBham7pZGhMjBoA1oAvyw
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
ExternalDocumentID US12008579B1
GroupedDBID EVB
ID FETCH-epo_espacenet_US12008579B13
IEDL.DBID EVB
IngestDate Fri Jul 19 12:47:29 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_US12008579B13
Notes Application Number: US202117397494
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240611&DB=EPODOC&CC=US&NR=12008579B1
ParticipantIDs epo_espacenet_US12008579B1
PublicationCentury 2000
PublicationDate 20240611
PublicationDateYYYYMMDD 2024-06-11
PublicationDate_xml – month: 06
  year: 2024
  text: 20240611
  day: 11
PublicationDecade 2020
PublicationYear 2024
RelatedCompanies Wells Fargo Bank, N.A
RelatedCompanies_xml – name: Wells Fargo Bank, N.A
Score 3.5470572
Snippet Techniques are described for determining a likelihood that a customer communication is fraudulent using one or more machine learning models. For example, a...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
Title Fraud detection using emotion-based deep learning model
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240611&DB=EPODOC&locale=&CC=US&NR=12008579B1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLam8bxBAcF4qEiot4hlSx87VEh9aULaQ2xFu01N605w6Craib9PEjrGBa6xZDlWHNvJZxvggSHmmTi9pG8hI4zbSJIB7xJumegkXZaaqgPfaGwNY_a8MBcteN_Wwqg-oZ-qOaKwqFTYe63u63L3iBUobGX1yN_E0vopmruB0WTHyj1RI_DccDoJJr7h-248M8YvLu2pXu4DT2RKeyKMtqU1hK-erEopf7uU6AT2p4JbUZ9CCwsNjvzt5DUNDkfNh7cGBwqhmVZisbHC6gxsEW1uMj3DWuGoCl2C11c6fk_kIdIxSSqWejMTYqWrgTfncB-Fc39IhCzLn40v49lO7P4FtIt1gZego5kyq5f1rMTJGE_RyRNKbUcE_5jSnCdX0PmbT-c_4jUcSyVKKBSlN9CuPzZ4K5xuze-Utr4Afu2GtQ
link.rule.ids 230,309,783,888,25576,76876
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLam8Rg3KCAYryKh3iqWLn3sUCG13TRg3Sa2od2mpnUnOHQV7cTfJwkd4wLXWLIcK47t5LMNcEcR04SfXr1tIdUps1GPOqylM8tEJ2rR2JQd-MKh1Z_Rp7k5r8H7phZG9gn9lM0RuUXF3N5LeV_n20esQGIri3v2xpdWD72pG2hVdizdE9ECz-2OR8HI13zfnU204YtLDNnLvePxTGmHh9i2sIbuqyeqUvLfLqV3CLtjzi0rj6CGmQINfzN5TYH9sPrwVmBPIjTjgi9WVlgcg82jzXWiJlhKHFWmCvD6UsXviTy6cEyCirlazYRYqnLgzQnc9rpTv69zWRY_G1_MJlux26dQz1YZnoGKZkwtIzGsyEkoi9FJI0Jshwf_GJOURefQ_JtP8z_iDTT603CwGDwOny_gQChUwKIIuYR6-bHGK-6AS3YtNfcF---JqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Fraud+detection+using+emotion-based+deep+learning+model&rft.inventor=Kumar%2C+Abhishek&rft.inventor=Kosheleva-Coates%2C+Julia+A&rft.inventor=Agarwal%2C+Amit&rft.inventor=Deb%2C+Dipanjan&rft.inventor=Yeri%2C+Naveen+Gururaja&rft.date=2024-06-11&rft.externalDBID=B1&rft.externalDocID=US12008579B1