Federated learning for client-specific neural network parameter generation for wireless communication
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a client may determine, using a conditioning network and based at least in part on an observed environmental vector, a set of client-specific parameters. The client may determine a latent vector us...
Saved in:
Main Authors | , , , , , , , |
---|---|
Format | Patent |
Language | English |
Published |
20.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a client may determine, using a conditioning network and based at least in part on an observed environmental vector, a set of client-specific parameters. The client may determine a latent vector using a client autoencoder and based at least in part on the set of client-specific parameters and the set of shared parameters. The client may transmit the observed environmental vector and the latent vector to a server. Numerous other aspects are provided. |
---|---|
AbstractList | Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a client may determine, using a conditioning network and based at least in part on an observed environmental vector, a set of client-specific parameters. The client may determine a latent vector using a client autoencoder and based at least in part on the set of client-specific parameters and the set of shared parameters. The client may transmit the observed environmental vector and the latent vector to a server. Numerous other aspects are provided. |
Author | Ji, Tingfang Yoo, Taesang Vitthaladevuni, Pavan Kumar Bhushan, Naga Sundararajan, Jay Kumar Kwon, Hwan Joon Mukkavilli, Krishna Kiran Namgoong, June |
Author_xml | – fullname: Bhushan, Naga – fullname: Yoo, Taesang – fullname: Sundararajan, Jay Kumar – fullname: Mukkavilli, Krishna Kiran – fullname: Kwon, Hwan Joon – fullname: Namgoong, June – fullname: Ji, Tingfang – fullname: Vitthaladevuni, Pavan Kumar |
BookMark | eNqNjDsOwjAQBV1Awe8O5gCRSKAgLYiIHqijlfMSWThra-0o1ydEHIBqinnz1mrBnrFSqNBAKKHRDiRsudOtF22cBacsBhjbWqMZg5CbkEYvbx1IqEeC6A787a3nuRutwCFGbXzfD2zNrLZq2ZKL2P24Ufvq9rzeMwRfIwYy00uqX488Lw_l6VxciuM_mw_86UI4 |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
ExternalDocumentID | US11909482B2 |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_US11909482B23 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 12:56:56 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_US11909482B23 |
Notes | Application Number: US202117444028 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240220&DB=EPODOC&CC=US&NR=11909482B2 |
ParticipantIDs | epo_espacenet_US11909482B2 |
PublicationCentury | 2000 |
PublicationDate | 20240220 |
PublicationDateYYYYMMDD | 2024-02-20 |
PublicationDate_xml | – month: 02 year: 2024 text: 20240220 day: 20 |
PublicationDecade | 2020 |
PublicationYear | 2024 |
RelatedCompanies | QUALCOMM Incorporated |
RelatedCompanies_xml | – name: QUALCOMM Incorporated |
Score | 3.5245457 |
Snippet | Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a client may determine, using a conditioning network and... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRICITY PHYSICS TRANSMISSION |
Title | Federated learning for client-specific neural network parameter generation for wireless communication |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240220&DB=EPODOC&locale=&CC=US&NR=11909482B2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5Kfd40KlofrCC5Bdu8cwhC86AIfWAb6a1sNmlRYlpsxL_vzJLaXvS0sMsu2YFvZjY737cAD8KxPExb55rtOp5m6npHc1Mn1_TU8vJOxi3DJqJwf2D3EvN5ak0b8L7hwkid0G8pjoiIEoj3Svrr1fYnVihrK9eP6Rt2LZ_iiR-q9emYrgr0thp2_Wg0DIeBGgR-MlYHL34HA59nunoX3fUeptEOoSF67RIrZbUbUuIT2B_hamV1Co28VOAo2Ly8psBhv77wVuBAVmiKNXbWKFyfQR6TAgTOzlj96MOCYe7JREHkRo3Ik1QAxEirkhfYyEpvRirfH1T9whZSa5p2KeeRXHGBHo-JXbbIOdzH0SToafjls18zzZLxdpPGBTTLZZlfAnMdBC3HUx4pwwkn9TJucp61TYML10qzK2j9vU7rv8FrOCaTS4J3-waa1edXfoshukrvpG1_AKvkl9Y |
link.rule.ids | 230,309,783,888,25576,76876 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5KfdSbVqXW1wqSW7DNo0kOQUjSELUvbCu9lc0mFqWmxUb8-84sqe1FTwu77JId-GZms_N9C3ArLNPBtPVVbdmWoxqa1lTt2EpVLTadtJlwU28RUbjba0Vj43FiTkrwvubCSJ3QbymOiIgSiPdc-uvl5idWIGsrV3fxG3Yt7sORGyjF6ZiuCrSGEnhue9AP-r7i--54qPSe3SYGPsewNQ_d9Q6m2Bahof3iEStluR1SwkPYHeBqWX4EpTSrQsVfv7xWhf1uceFdhT1ZoSlW2FmgcHUMaUgKEDg7YcWjDzOGuScTcyI3qkSepAIgRlqVfI6NrPRmpPL9QdUvbCa1pmmXch7JFc_R4zGxzRY5gZuwPfIjFb98-mum6Xi42aR-CuVskaU1YLaFoOV4yiNlOGHFTsINzpOGoXNhm3FyBvW_16n_N3gNlWjU7Uw7D72nczgg80uyd-MCyvnnV3qJ4TqPr6SdfwD4T5rJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Federated+learning+for+client-specific+neural+network+parameter+generation+for+wireless+communication&rft.inventor=Bhushan%2C+Naga&rft.inventor=Yoo%2C+Taesang&rft.inventor=Sundararajan%2C+Jay+Kumar&rft.inventor=Mukkavilli%2C+Krishna+Kiran&rft.inventor=Kwon%2C+Hwan+Joon&rft.inventor=Namgoong%2C+June&rft.inventor=Ji%2C+Tingfang&rft.inventor=Vitthaladevuni%2C+Pavan+Kumar&rft.date=2024-02-20&rft.externalDBID=B2&rft.externalDocID=US11909482B2 |