Using iterative 3D-model fitting for domain adaptation of a hand-pose-estimation neural network

Described is a solution for an unlabeled target domain dataset challenge using a domain adaptation technique to train a neural network using an iterative 3D model fitting algorithm to generate refined target domain labels. The neural network supports the convergence of the 3D model fitting algorithm...

Full description

Saved in:
Bibliographic Details
Main Author Lyons, Samuel John Llewellyn
Format Patent
LanguageEnglish
Published 12.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Described is a solution for an unlabeled target domain dataset challenge using a domain adaptation technique to train a neural network using an iterative 3D model fitting algorithm to generate refined target domain labels. The neural network supports the convergence of the 3D model fitting algorithm and the 3D model fitting algorithm provides refined labels that are used for training of the neural network. During real-time inference, only the trained neural network is required. A convolutional neural network (CNN) is trained using labeled synthetic frames (source domain) with unlabeled real depth frames (target domain). The CNN initializes an offline iterative 3D model fitting algorithm capable of accurately labeling the hand pose in real depth frames. The labeled real depth frames are used to continue training the CNN thereby improving accuracy beyond that achievable by using only unlabeled real depth frames for domain adaptation.
AbstractList Described is a solution for an unlabeled target domain dataset challenge using a domain adaptation technique to train a neural network using an iterative 3D model fitting algorithm to generate refined target domain labels. The neural network supports the convergence of the 3D model fitting algorithm and the 3D model fitting algorithm provides refined labels that are used for training of the neural network. During real-time inference, only the trained neural network is required. A convolutional neural network (CNN) is trained using labeled synthetic frames (source domain) with unlabeled real depth frames (target domain). The CNN initializes an offline iterative 3D model fitting algorithm capable of accurately labeling the hand pose in real depth frames. The labeled real depth frames are used to continue training the CNN thereby improving accuracy beyond that achievable by using only unlabeled real depth frames for domain adaptation.
Author Lyons, Samuel John Llewellyn
Author_xml – fullname: Lyons, Samuel John Llewellyn
BookMark eNqNyjsOwjAMgOEMMPC6gzlAhrYgmHmJHTpXFnEgorWjxMD1KYIDMP3D_43NgIVpZJo6B75CUEqo4UlQ7WwnjlrwQfWzvCRw0mFgQIdReyYM4gHhhuxslEyWsobue5geCds--pJ0n5qhxzbT7NeJmR_25-3RUpSGcsQL9bKpT0WxXpTLYrUpq3_MG5kmPqM
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
ExternalDocumentID US11842517B2
GroupedDBID EVB
ID FETCH-epo_espacenet_US11842517B23
IEDL.DBID EVB
IngestDate Fri Sep 20 10:12:57 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_US11842517B23
Notes Application Number: US202016843281
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231212&DB=EPODOC&CC=US&NR=11842517B2
ParticipantIDs epo_espacenet_US11842517B2
PublicationCentury 2000
PublicationDate 20231212
PublicationDateYYYYMMDD 2023-12-12
PublicationDate_xml – month: 12
  year: 2023
  text: 20231212
  day: 12
PublicationDecade 2020
PublicationYear 2023
RelatedCompanies Ultrahaptics IP Ltd
RelatedCompanies_xml – name: Ultrahaptics IP Ltd
Score 3.5149465
Snippet Described is a solution for an unlabeled target domain dataset challenge using a domain adaptation technique to train a neural network using an iterative 3D...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
Title Using iterative 3D-model fitting for domain adaptation of a hand-pose-estimation neural network
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231212&DB=EPODOC&locale=&CC=US&NR=11842517B2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5Kfd60KlofrCC5LbZNUjeHIDQPitAHtpXewibZhYomwUT8-85uU-tFT4ENLMkkMzs7833fAtw5PGY25uHUEap0I9M-Zfjj0KTXlSztpLEpFHd4NO4PF9bT0l424HXDhdE6oV9aHBE9KkF_r3S8LrZFLF9jK8v7eIVD-WM4d32j3h1jsoKh2PAHbjCd-BPP8Dx3MTPGzy7m0ZZS5xpguN7BNPpBwb-Cl4FipRS_l5TwCHanOFtWHUNDZC048DYnr7Vgf1Q3vFuwpxGaSYmDtReWJxDpPj9ZCyJjtCKmT_WJNkSuNIyZYCZK0vwdd_2Ep7xYt9tJLgknqlJOi7wUVOlrrImLRKla8je8aEz4KdyGwdwbUnzm6MdA0WK2fT3zDJpZnolzRcfmzGGSd5h0LJFYDjdt_AZcCiZ6iYgvoP33PO3_bl7CoTK2gnV0e1fQrD4-xTUuzlV8o636DQOslZ0
link.rule.ids 230,309,783,888,25578,76884
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5KfdSbVqXW1wqS22KbpGVzCEKTlqp9YVvpLWySXahoEkzEv-_strVe9BTYwJJMMrPfznzzLcCtw0PWQhxOHaFSNzJuU4Y_Do3MpmRxIw4toXqHh6N2f24_LlqLErxuemG0TuiXFkdEj4rQ3wsdr7NtEsvX3Mr8LlziUHrfm7m-sd4dI1jBUGz4Hbc7Gftjz_A8dz41Rs8u4mhbqXN1MFzvIMRmSme_-9JRXSnZ7yWldwi7E5wtKY6gJJIqVLzNyWtV2B-uC95V2NMMzSjHwbUX5scQ6Do_WQkiY7Qilk_1iTZELjWNmSASJXH6jrt-wmOercrtJJWEE5Upp1maC6r0NVaNi0SpWvI3vGhO-Anc9Lozr0_xmYMfAwXz6fb1rFMoJ2kiaqodmzOHSd5g0rFFZDvcauE34FIwYUYiPIP63_PU_7t5DZX-bDgIBg-jp3M4UIZXFI-meQHl4uNTXOJCXYRX2sLfMO-YjQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Using+iterative+3D-model+fitting+for+domain+adaptation+of+a+hand-pose-estimation+neural+network&rft.inventor=Lyons%2C+Samuel+John+Llewellyn&rft.date=2023-12-12&rft.externalDBID=B2&rft.externalDocID=US11842517B2