Learning motor primitives and training a machine learning system using a linear-feedback-stabilized policy
A computer-implemented method of training a student machine learning system comprises receiving data indicating execution of an expert, determining one or more actions performed by the expert during the execution and a corresponding state-action Jacobian, and training the student machine learning sy...
Saved in:
Main Authors | , , , |
---|---|
Format | Patent |
Language | English |
Published |
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A computer-implemented method of training a student machine learning system comprises receiving data indicating execution of an expert, determining one or more actions performed by the expert during the execution and a corresponding state-action Jacobian, and training the student machine learning system using a linear-feedback-stabilized policy. The linear-feedback-stabilized policy may be based on the state-action Jacobian. Also a neural network system for representing a space of probabilistic motor primitives, implemented by one or more computers. The neural network system comprises an encoder configured to generate latent variables based on a plurality of inputs, each input comprising a plurality of frames, and a decoder configured to generate an action based on one or more of the latent variables and a state. |
---|---|
AbstractList | A computer-implemented method of training a student machine learning system comprises receiving data indicating execution of an expert, determining one or more actions performed by the expert during the execution and a corresponding state-action Jacobian, and training the student machine learning system using a linear-feedback-stabilized policy. The linear-feedback-stabilized policy may be based on the state-action Jacobian. Also a neural network system for representing a space of probabilistic motor primitives, implemented by one or more computers. The neural network system comprises an encoder configured to generate latent variables based on a plurality of inputs, each input comprising a plurality of frames, and a decoder configured to generate an action based on one or more of the latent variables and a state. |
Author | Pham, Vu Merel, Joshua Galashov, Alexandre Hasenclever, Leonard |
Author_xml | – fullname: Merel, Joshua – fullname: Hasenclever, Leonard – fullname: Galashov, Alexandre – fullname: Pham, Vu |
BookMark | eNqNy7sSAUEQheEJCNzeoT3ABouiNqUogQzxVu9sL83canqoWk9PueSiE3zn76uO84566rIjjI7dCaxPPkKIbDnxnQTQ1ZAi8lsRLOozOwLzC6SVRBZu8nHzQoxZQ1RXqK-ZJKzY8INqCN6wboeq26ARGn13oMab9WG1zSj4kiSgJkepPO7zfJHPimK-nEz_-TwBLF9Dcg |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
ExternalDocumentID | US11714996B2 |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_US11714996B23 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 14:30:01 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_US11714996B23 |
Notes | Application Number: US202217872308 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230801&DB=EPODOC&CC=US&NR=11714996B2 |
ParticipantIDs | epo_espacenet_US11714996B2 |
PublicationCentury | 2000 |
PublicationDate | 20230801 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 20230801 day: 01 |
PublicationDecade | 2020 |
PublicationYear | 2023 |
RelatedCompanies | DeepMind Technologies Limited |
RelatedCompanies_xml | – name: DeepMind Technologies Limited |
Score | 3.4851062 |
Snippet | A computer-implemented method of training a student machine learning system comprises receiving data indicating execution of an expert, determining one or more... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
Title | Learning motor primitives and training a machine learning system using a linear-feedback-stabilized policy |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230801&DB=EPODOC&locale=&CC=US&NR=11714996B2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5Kfd60KlofrCC5Lbq0TdNDEJq0FKEPbCu9lX1FrJqGJiL4653dJtaLXnfJshmYb75svv0G4KaFwCsjzqinuUvrHpPUc2uatqJIeKrREEqY847-wO1N6w-zxqwEi-IujPUJ_bTmiJhREvM9s3idbA6xQqutTG_FCw4t77sTP3Tyr2Pk04i4Ttj2O6NhOAycIPCnY2fw6DPT6Bu5fRvhegtpdNNkQ-epbW6lJL9LSvcAtke4WpwdQknHFdgLis5rFdjt5z-8K7BjFZoyxcE8C9MjWOSmqM8E47xckcS05jKwlRIeK1J0fSCcvFuppCZvxQNr42Zi1O5m3nBMvqIRljDB5StFqmjEsl9akcQaBh_DdbczCXoUtz__idV8Ot68ae0EyvEy1qdAmJIt5kl2x5GiRZpzLVylkM14rCmVrJ1B9e91qv9NnsO-iftaE3cB5Wz1oS-xTmfiygb4G9y1mzE |
link.rule.ids | 230,309,783,888,25576,76876 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4QfOBNUaP4WhPTW6NNoZRDY0ILQeUVAcON7KtG1NLQGhN_vbNLK170uptu2mnmm6_bb78BuGog8PKQWqYrqWNWXYubrmNLsxGGzBW1GhNM7Xf0-k5nUr2f1qYFmOdnYbRP6Kc2R8SM4pjvqcbreL2JFWhtZXLNXnBocdsee4GRfR0jn0bENYKm1xoOgoFv-L43GRn9R89Sjb6R2zcRrjeQYtdVNrSemupUSvy7pLR3YXOIq0XpHhRkVIaSn3deK8N2L_vhXYYtrdDkCQ5mWZjswzwzRX0mGOfFksSqNZeCrYTQSJC86wOh5F1LJSV5yy9YGTcTpXZX84pj0qUZYgljlL-aSBWVWPZLChJrw-ADuGy3xn7HxNuf_cRqNhmtn9Q-hGK0iOQREEvwhuVy64YiRQslpZI5QiCbca06F9w-hsrf61T-m7yAUmfc6866d_2HE9hR72CljzuFYrr8kGdYs1N2roP9DVFwniQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Learning+motor+primitives+and+training+a+machine+learning+system+using+a+linear-feedback-stabilized+policy&rft.inventor=Merel%2C+Joshua&rft.inventor=Hasenclever%2C+Leonard&rft.inventor=Galashov%2C+Alexandre&rft.inventor=Pham%2C+Vu&rft.date=2023-08-01&rft.externalDBID=B2&rft.externalDocID=US11714996B2 |