Machine learning implementation for multi-analyte assay development and testing
Systems and methods that analyze blood-based cancer diagnostic tests using multiple classes of molecules are described. The system uses machine learning (ML) to analyze multiple analytes, for example cell-free DNA, cell-free microRNA, and circulating proteins, from a biological sample. The system ca...
Saved in:
Main Authors | , , , , , , , , |
---|---|
Format | Patent |
Language | English |
Published |
20.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Systems and methods that analyze blood-based cancer diagnostic tests using multiple classes of molecules are described. The system uses machine learning (ML) to analyze multiple analytes, for example cell-free DNA, cell-free microRNA, and circulating proteins, from a biological sample. The system can use multiple assays, e.g., whole-genome sequencing, whole-genome bisulfite sequencing or EM-seq, small-RNA sequencing, and quantitative immunoassay. This can increase the sensitivity and specificity of diagnostics by exploiting independent information between signals. During operation, the system receives a biological sample, and separates a plurality of molecule classes from the sample. For a plurality of assays, the system identifies feature sets to input to a machine learning model. The system performs an assay on each molecule class and forms a feature vector from the measured values. The system inputs the feature vector into the machine learning model and obtains an output classification of whether the sample has a specified property. |
---|---|
AbstractList | Systems and methods that analyze blood-based cancer diagnostic tests using multiple classes of molecules are described. The system uses machine learning (ML) to analyze multiple analytes, for example cell-free DNA, cell-free microRNA, and circulating proteins, from a biological sample. The system can use multiple assays, e.g., whole-genome sequencing, whole-genome bisulfite sequencing or EM-seq, small-RNA sequencing, and quantitative immunoassay. This can increase the sensitivity and specificity of diagnostics by exploiting independent information between signals. During operation, the system receives a biological sample, and separates a plurality of molecule classes from the sample. For a plurality of assays, the system identifies feature sets to input to a machine learning model. The system performs an assay on each molecule class and forms a feature vector from the measured values. The system inputs the feature vector into the machine learning model and obtains an output classification of whether the sample has a specified property. |
Author | White, Brandon Haque, Imran Ariazi, Eric Niehaus, Katherine Kannan, Ajay Wan, Nathan Delubac, Daniel Drake, Adam Liu, Tzu-Yu |
Author_xml | – fullname: Delubac, Daniel – fullname: Wan, Nathan – fullname: Drake, Adam – fullname: Ariazi, Eric – fullname: Haque, Imran – fullname: Kannan, Ajay – fullname: Liu, Tzu-Yu – fullname: White, Brandon – fullname: Niehaus, Katherine |
BookMark | eNqNyz0KAjEQhuEUWvh3h_EAW8RF0VZRbMRCrZdh91sNJJOwGYW9vQoewOptnndsBhIFI3M-cf1wAvLgTpzcyYXkESDK6qJQGzsKT6-uYGHfK4hz5p4avOBj-kJiaUiR9bNPzbBlnzH7dWLmh_11dyyQYoWcuIZAq9vF2tXabpbldlH-Y97jaDmZ |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
ExternalDocumentID | US11681953B2 |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_US11681953B23 |
IEDL.DBID | EVB |
IngestDate | Fri Nov 01 05:50:58 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_US11681953B23 |
Notes | Application Number: US201916624897 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230620&DB=EPODOC&CC=US&NR=11681953B2 |
ParticipantIDs | epo_espacenet_US11681953B2 |
PublicationCentury | 2000 |
PublicationDate | 20230620 |
PublicationDateYYYYMMDD | 2023-06-20 |
PublicationDate_xml | – month: 06 year: 2023 text: 20230620 day: 20 |
PublicationDecade | 2020 |
PublicationYear | 2023 |
RelatedCompanies | FREENOME HOLDINGS, INC |
RelatedCompanies_xml | – name: FREENOME HOLDINGS, INC |
Score | 3.4705396 |
Snippet | Systems and methods that analyze blood-based cancer diagnostic tests using multiple classes of molecules are described. The system uses machine learning (ML)... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS PHYSICS |
Title | Machine learning implementation for multi-analyte assay development and testing |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230620&DB=EPODOC&locale=&CC=US&NR=11681953B2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_G_HzTquj8IIL0rdjOrmseitB2ZQhdh1tlbyNN2zHBbtiK-N97Ca31RfN4gZAc3OUu97tfAO5shh6QmpnG9GGumYmeazazqWajuxT9CDhEv3M4scax-bQYLDrw2vTCSJ7QT0mOiBbF0d4r6a-37SOWL7GV5X2yRtHmMZg7vlpnxyKe7uuq7zqjaeRHnup5TjxTJ8-OYViyYuSiu97BMHook7YXV3SlbH9fKcER7E5xtaI6hk5WKHDgNT-vKbAf1gVvBfYkQpOXKKytsDyBKJQIyIzUXz6syPqtgYGLrRMMRIlECmpMcI5UGcEQmX2RtEUIEVakpBIUG8XqFG6D0dwba7jH5Y9ClvGsPc7DGXSLTZGdA-F6YhoGZTaj1EwNTgcJpp-cW7mZGzrvX0Dv73V6_01ewqFQroBI9fUr6FbvH9k1XsZVciO1-A3-HI8b |
link.rule.ids | 230,309,783,888,25577,76883 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_G_JhvOhWdXxGkb8W2y2r7UIS1K1PXdbhV9lbSrB0T7IariP-9l9BZXzSPFwjJwV3ucr_7BeDGYugBbZqqTLvLVJpomWoxy1YtdJeiHwGH6HcOhmY_oo_TzrQGr5teGMkT-inJEdGiONp7If31qnrE8iS2cn2bLFC0vPcnjqeU2bGIpw1N8bpObxR6oau4rhONleGzo-umrBh10V1vYYhtyVTppSu6Ula_rxR_H7ZHuFpeHEAtzZvQcDc_rzVhNygL3k3YkQhNvkZhaYXrQwgDiYBMSfnlw5ws3jYwcLF1goEokUhBlQnOkSIlGCKzLzKrEEKE5TNSCIqNfH4E135v4vZV3GP8o5A4GlfHaR9DPV_m6QkQriVU121mMdumM53bnQTTT87NjGa6xo1TaP29Tuu_ySto9CfBIB48DJ_OYE8oWsClDO0c6sX7R3qBF3ORXEqNfgPcz5IL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Machine+learning+implementation+for+multi-analyte+assay+development+and+testing&rft.inventor=Delubac%2C+Daniel&rft.inventor=Wan%2C+Nathan&rft.inventor=Drake%2C+Adam&rft.inventor=Ariazi%2C+Eric&rft.inventor=Haque%2C+Imran&rft.inventor=Kannan%2C+Ajay&rft.inventor=Liu%2C+Tzu-Yu&rft.inventor=White%2C+Brandon&rft.inventor=Niehaus%2C+Katherine&rft.date=2023-06-20&rft.externalDBID=B2&rft.externalDocID=US11681953B2 |