Machine learning implementation for multi-analyte assay development and testing

Systems and methods that analyze blood-based cancer diagnostic tests using multiple classes of molecules are described. The system uses machine learning (ML) to analyze multiple analytes, for example cell-free DNA, cell-free microRNA, and circulating proteins, from a biological sample. The system ca...

Full description

Saved in:
Bibliographic Details
Main Authors Delubac, Daniel, Wan, Nathan, Drake, Adam, Ariazi, Eric, Haque, Imran, Kannan, Ajay, Liu, Tzu-Yu, White, Brandon, Niehaus, Katherine
Format Patent
LanguageEnglish
Published 20.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Systems and methods that analyze blood-based cancer diagnostic tests using multiple classes of molecules are described. The system uses machine learning (ML) to analyze multiple analytes, for example cell-free DNA, cell-free microRNA, and circulating proteins, from a biological sample. The system can use multiple assays, e.g., whole-genome sequencing, whole-genome bisulfite sequencing or EM-seq, small-RNA sequencing, and quantitative immunoassay. This can increase the sensitivity and specificity of diagnostics by exploiting independent information between signals. During operation, the system receives a biological sample, and separates a plurality of molecule classes from the sample. For a plurality of assays, the system identifies feature sets to input to a machine learning model. The system performs an assay on each molecule class and forms a feature vector from the measured values. The system inputs the feature vector into the machine learning model and obtains an output classification of whether the sample has a specified property.
AbstractList Systems and methods that analyze blood-based cancer diagnostic tests using multiple classes of molecules are described. The system uses machine learning (ML) to analyze multiple analytes, for example cell-free DNA, cell-free microRNA, and circulating proteins, from a biological sample. The system can use multiple assays, e.g., whole-genome sequencing, whole-genome bisulfite sequencing or EM-seq, small-RNA sequencing, and quantitative immunoassay. This can increase the sensitivity and specificity of diagnostics by exploiting independent information between signals. During operation, the system receives a biological sample, and separates a plurality of molecule classes from the sample. For a plurality of assays, the system identifies feature sets to input to a machine learning model. The system performs an assay on each molecule class and forms a feature vector from the measured values. The system inputs the feature vector into the machine learning model and obtains an output classification of whether the sample has a specified property.
Author White, Brandon
Haque, Imran
Ariazi, Eric
Niehaus, Katherine
Kannan, Ajay
Wan, Nathan
Delubac, Daniel
Drake, Adam
Liu, Tzu-Yu
Author_xml – fullname: Delubac, Daniel
– fullname: Wan, Nathan
– fullname: Drake, Adam
– fullname: Ariazi, Eric
– fullname: Haque, Imran
– fullname: Kannan, Ajay
– fullname: Liu, Tzu-Yu
– fullname: White, Brandon
– fullname: Niehaus, Katherine
BookMark eNqNyz0KAjEQhuEUWvh3h_EAW8RF0VZRbMRCrZdh91sNJJOwGYW9vQoewOptnndsBhIFI3M-cf1wAvLgTpzcyYXkESDK6qJQGzsKT6-uYGHfK4hz5p4avOBj-kJiaUiR9bNPzbBlnzH7dWLmh_11dyyQYoWcuIZAq9vF2tXabpbldlH-Y97jaDmZ
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
ExternalDocumentID US11681953B2
GroupedDBID EVB
ID FETCH-epo_espacenet_US11681953B23
IEDL.DBID EVB
IngestDate Fri Nov 01 05:50:58 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_US11681953B23
Notes Application Number: US201916624897
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230620&DB=EPODOC&CC=US&NR=11681953B2
ParticipantIDs epo_espacenet_US11681953B2
PublicationCentury 2000
PublicationDate 20230620
PublicationDateYYYYMMDD 2023-06-20
PublicationDate_xml – month: 06
  year: 2023
  text: 20230620
  day: 20
PublicationDecade 2020
PublicationYear 2023
RelatedCompanies FREENOME HOLDINGS, INC
RelatedCompanies_xml – name: FREENOME HOLDINGS, INC
Score 3.4705396
Snippet Systems and methods that analyze blood-based cancer diagnostic tests using multiple classes of molecules are described. The system uses machine learning (ML)...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
Title Machine learning implementation for multi-analyte assay development and testing
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230620&DB=EPODOC&locale=&CC=US&NR=11681953B2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_G_HzTquj8IIL0rdjOrmseitB2ZQhdh1tlbyNN2zHBbtiK-N97Ca31RfN4gZAc3OUu97tfAO5shh6QmpnG9GGumYmeazazqWajuxT9CDhEv3M4scax-bQYLDrw2vTCSJ7QT0mOiBbF0d4r6a-37SOWL7GV5X2yRtHmMZg7vlpnxyKe7uuq7zqjaeRHnup5TjxTJ8-OYViyYuSiu97BMHook7YXV3SlbH9fKcER7E5xtaI6hk5WKHDgNT-vKbAf1gVvBfYkQpOXKKytsDyBKJQIyIzUXz6syPqtgYGLrRMMRIlECmpMcI5UGcEQmX2RtEUIEVakpBIUG8XqFG6D0dwba7jH5Y9ClvGsPc7DGXSLTZGdA-F6YhoGZTaj1EwNTgcJpp-cW7mZGzrvX0Dv73V6_01ewqFQroBI9fUr6FbvH9k1XsZVciO1-A3-HI8b
link.rule.ids 230,309,783,888,25577,76883
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_G_JhvOhWdXxGkb8W2y2r7UIS1K1PXdbhV9lbSrB0T7IariP-9l9BZXzSPFwjJwV3ucr_7BeDGYugBbZqqTLvLVJpomWoxy1YtdJeiHwGH6HcOhmY_oo_TzrQGr5teGMkT-inJEdGiONp7If31qnrE8iS2cn2bLFC0vPcnjqeU2bGIpw1N8bpObxR6oau4rhONleGzo-umrBh10V1vYYhtyVTppSu6Ula_rxR_H7ZHuFpeHEAtzZvQcDc_rzVhNygL3k3YkQhNvkZhaYXrQwgDiYBMSfnlw5ws3jYwcLF1goEokUhBlQnOkSIlGCKzLzKrEEKE5TNSCIqNfH4E135v4vZV3GP8o5A4GlfHaR9DPV_m6QkQriVU121mMdumM53bnQTTT87NjGa6xo1TaP29Tuu_ySto9CfBIB48DJ_OYE8oWsClDO0c6sX7R3qBF3ORXEqNfgPcz5IL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Machine+learning+implementation+for+multi-analyte+assay+development+and+testing&rft.inventor=Delubac%2C+Daniel&rft.inventor=Wan%2C+Nathan&rft.inventor=Drake%2C+Adam&rft.inventor=Ariazi%2C+Eric&rft.inventor=Haque%2C+Imran&rft.inventor=Kannan%2C+Ajay&rft.inventor=Liu%2C+Tzu-Yu&rft.inventor=White%2C+Brandon&rft.inventor=Niehaus%2C+Katherine&rft.date=2023-06-20&rft.externalDBID=B2&rft.externalDocID=US11681953B2