Allocation of shared computing resources using source code feature extraction and machine learning
Techniques are provided for allocation of shared computing resources using source code feature extraction and machine learning techniques. An exemplary method comprises obtaining source code for execution in a shared computing environment; extracting a plurality of discriminative features from the s...
Saved in:
Main Authors | , , |
---|---|
Format | Patent |
Language | English |
Published |
31.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Techniques are provided for allocation of shared computing resources using source code feature extraction and machine learning techniques. An exemplary method comprises obtaining source code for execution in a shared computing environment; extracting a plurality of discriminative features from the source code; obtaining a trained machine learning model; and generating a prediction of an allocation of one or more resources of the shared computing environment needed to satisfy one or more service level agreement requirements for the source code. The generated prediction is optionally adjusted using a statistical analysis of an error curve, based on one or more error boundaries obtained by the trained machine learning model. The trained machine learning model can be trained using a set of discriminative features extracted from training source code and corresponding measurements of metrics of the service level agreement requirements obtained by executing the training source code on a plurality of the resources of the shared computing environment. |
---|---|
AbstractList | Techniques are provided for allocation of shared computing resources using source code feature extraction and machine learning techniques. An exemplary method comprises obtaining source code for execution in a shared computing environment; extracting a plurality of discriminative features from the source code; obtaining a trained machine learning model; and generating a prediction of an allocation of one or more resources of the shared computing environment needed to satisfy one or more service level agreement requirements for the source code. The generated prediction is optionally adjusted using a statistical analysis of an error curve, based on one or more error boundaries obtained by the trained machine learning model. The trained machine learning model can be trained using a set of discriminative features extracted from training source code and corresponding measurements of metrics of the service level agreement requirements obtained by executing the training source code on a plurality of the resources of the shared computing environment. |
Author | Calmon, Tiago Salviano Prado, Adriana Bechara Dias, Jonas F |
Author_xml | – fullname: Calmon, Tiago Salviano – fullname: Dias, Jonas F – fullname: Prado, Adriana Bechara |
BookMark | eNqNjEkKwkAQRXuhC6c7lAcQHNC4VVHcq-tQdn5MoFMVegCPbxwO4Orz4L0_ND1RwcDcd86p5VirkJYUKvYoyGrTpljLgzyCJm8RKIU3f6kTClAJjsmD8Iye7eeCpaCGbVULyIG9dM3Y9Et2AZPfjsz0dLwezjO0miO0bCGI-e2yWKw32Xae7Zerf5wX99dAmw |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
ExternalDocumentID | US11567807B2 |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_US11567807B23 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 13:12:42 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_US11567807B23 |
Notes | Application Number: US201815941434 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230131&DB=EPODOC&CC=US&NR=11567807B2 |
ParticipantIDs | epo_espacenet_US11567807B2 |
PublicationCentury | 2000 |
PublicationDate | 20230131 |
PublicationDateYYYYMMDD | 2023-01-31 |
PublicationDate_xml | – month: 01 year: 2023 text: 20230131 day: 31 |
PublicationDecade | 2020 |
PublicationYear | 2023 |
RelatedCompanies | EMC IP Holding Company LLC |
RelatedCompanies_xml | – name: EMC IP Holding Company LLC |
Score | 3.445748 |
Snippet | Techniques are provided for allocation of shared computing resources using source code feature extraction and machine learning techniques. An exemplary method... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRIC DIGITAL DATA PROCESSING ELECTRICITY PHYSICS TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION |
Title | Allocation of shared computing resources using source code feature extraction and machine learning |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230131&DB=EPODOC&locale=&CC=US&NR=11567807B2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5Kfd40KlofjCC5BbttzKaHIDZpKEIf2EZ6K3ltVTQtTcS_7-w2tV70mA3sY-CbmZ39ZgbghgmTcfITjKbFhWGGLDFacSsyyBkxOSlHbtoyObnXt7qB-Ti5m1TgbZ0Lo-qEfqniiISomPBeKH292ASxPMWtzG-jVxqa3_tjx9PL2zH504yUitd2OsOBN3B113WCkd5_csjxoZXrvE3qeovcaC7R0Hluy6yUxW-T4h_A9pBmy4pDqKSZBnvuuvOaBru98sFbgx3F0IxzGixRmB9B9PAuTZDcJc4F5i-SRI6x6s9AlgiXZUg-R8lqn-HqC2X2OopUVfJE0snLVU4DhlmCH4pTmWLZRGJ2DNd-Z-x2Ddr29EdG02C0OWHzBKrZPEtPAW3LajTClNlJXZg2gZXuezHBOAwTwaNEnEHt73lq__08h30pbxmNaLILqBbLz_SS7HMRXSnBfgPMcZX4 |
link.rule.ids | 230,309,783,888,25576,76876 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4QfOBNUaP4GhPDrZHS2i2HxkgLQeUVAcON9LWo0Za0Nf59Z5ciXvTYbbKPSb6Z2dlvZgCuVK6rjPwERTMYV3RXDZSG3_AUckZ0RsqR6aZITu71jc5Ef5jeTAvwtsqFkXVCv2RxREKUT3jPpL5erINYjuRWptfeKw3Ft-2x5VTz2zH50yopFadptYYDZ2BXbduajKr9J4scH1q5xpqkrjfIxWYCDa3npshKWfw2Ke1d2BzSbFG2B4UwKkPJXnVeK8N2L3_wLsOWZGj6KQ3mKEz3wbt7FyZI7BJjjumLIJGjL_szkCXCJA_JpyhY7XNcfqHIXkceykqeSDo5WeY0oBsF-CE5lSHmTSTmB3DZbo3tjkLbnv3IaDYZrU-oHUIxiqPwCNA0jHrdDVUzqHHdJLDSfc8nGLtuwJkX8GOo_D1P5b-fF1DqjHvdWfe-_3gCO0L2IjKhqadQzJLP8IxsdeadSyF_AwJomOs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Allocation+of+shared+computing+resources+using+source+code+feature+extraction+and+machine+learning&rft.inventor=Calmon%2C+Tiago+Salviano&rft.inventor=Dias%2C+Jonas+F&rft.inventor=Prado%2C+Adriana+Bechara&rft.date=2023-01-31&rft.externalDBID=B2&rft.externalDocID=US11567807B2 |