Allocation of shared computing resources using source code feature extraction and machine learning

Techniques are provided for allocation of shared computing resources using source code feature extraction and machine learning techniques. An exemplary method comprises obtaining source code for execution in a shared computing environment; extracting a plurality of discriminative features from the s...

Full description

Saved in:
Bibliographic Details
Main Authors Calmon, Tiago Salviano, Dias, Jonas F, Prado, Adriana Bechara
Format Patent
LanguageEnglish
Published 31.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Techniques are provided for allocation of shared computing resources using source code feature extraction and machine learning techniques. An exemplary method comprises obtaining source code for execution in a shared computing environment; extracting a plurality of discriminative features from the source code; obtaining a trained machine learning model; and generating a prediction of an allocation of one or more resources of the shared computing environment needed to satisfy one or more service level agreement requirements for the source code. The generated prediction is optionally adjusted using a statistical analysis of an error curve, based on one or more error boundaries obtained by the trained machine learning model. The trained machine learning model can be trained using a set of discriminative features extracted from training source code and corresponding measurements of metrics of the service level agreement requirements obtained by executing the training source code on a plurality of the resources of the shared computing environment.
AbstractList Techniques are provided for allocation of shared computing resources using source code feature extraction and machine learning techniques. An exemplary method comprises obtaining source code for execution in a shared computing environment; extracting a plurality of discriminative features from the source code; obtaining a trained machine learning model; and generating a prediction of an allocation of one or more resources of the shared computing environment needed to satisfy one or more service level agreement requirements for the source code. The generated prediction is optionally adjusted using a statistical analysis of an error curve, based on one or more error boundaries obtained by the trained machine learning model. The trained machine learning model can be trained using a set of discriminative features extracted from training source code and corresponding measurements of metrics of the service level agreement requirements obtained by executing the training source code on a plurality of the resources of the shared computing environment.
Author Calmon, Tiago Salviano
Prado, Adriana Bechara
Dias, Jonas F
Author_xml – fullname: Calmon, Tiago Salviano
– fullname: Dias, Jonas F
– fullname: Prado, Adriana Bechara
BookMark eNqNjEkKwkAQRXuhC6c7lAcQHNC4VVHcq-tQdn5MoFMVegCPbxwO4Orz4L0_ND1RwcDcd86p5VirkJYUKvYoyGrTpljLgzyCJm8RKIU3f6kTClAJjsmD8Iye7eeCpaCGbVULyIG9dM3Y9Et2AZPfjsz0dLwezjO0miO0bCGI-e2yWKw32Xae7Zerf5wX99dAmw
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
ExternalDocumentID US11567807B2
GroupedDBID EVB
ID FETCH-epo_espacenet_US11567807B23
IEDL.DBID EVB
IngestDate Fri Jul 19 13:12:42 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_US11567807B23
Notes Application Number: US201815941434
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230131&DB=EPODOC&CC=US&NR=11567807B2
ParticipantIDs epo_espacenet_US11567807B2
PublicationCentury 2000
PublicationDate 20230131
PublicationDateYYYYMMDD 2023-01-31
PublicationDate_xml – month: 01
  year: 2023
  text: 20230131
  day: 31
PublicationDecade 2020
PublicationYear 2023
RelatedCompanies EMC IP Holding Company LLC
RelatedCompanies_xml – name: EMC IP Holding Company LLC
Score 3.445748
Snippet Techniques are provided for allocation of shared computing resources using source code feature extraction and machine learning techniques. An exemplary method...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
Title Allocation of shared computing resources using source code feature extraction and machine learning
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230131&DB=EPODOC&locale=&CC=US&NR=11567807B2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5Kfd40KlofjCC5BbttzKaHIDZpKEIf2EZ6K3ltVTQtTcS_7-w2tV70mA3sY-CbmZ39ZgbghgmTcfITjKbFhWGGLDFacSsyyBkxOSlHbtoyObnXt7qB-Ti5m1TgbZ0Lo-qEfqniiISomPBeKH292ASxPMWtzG-jVxqa3_tjx9PL2zH504yUitd2OsOBN3B113WCkd5_csjxoZXrvE3qeovcaC7R0Hluy6yUxW-T4h_A9pBmy4pDqKSZBnvuuvOaBru98sFbgx3F0IxzGixRmB9B9PAuTZDcJc4F5i-SRI6x6s9AlgiXZUg-R8lqn-HqC2X2OopUVfJE0snLVU4DhlmCH4pTmWLZRGJ2DNd-Z-x2Ddr29EdG02C0OWHzBKrZPEtPAW3LajTClNlJXZg2gZXuezHBOAwTwaNEnEHt73lq__08h30pbxmNaLILqBbLz_SS7HMRXSnBfgPMcZX4
link.rule.ids 230,309,783,888,25576,76876
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4QfOBNUaP4GhPDrZHS2i2HxkgLQeUVAcON9LWo0Za0Nf59Z5ciXvTYbbKPSb6Z2dlvZgCuVK6rjPwERTMYV3RXDZSG3_AUckZ0RsqR6aZITu71jc5Ef5jeTAvwtsqFkXVCv2RxREKUT3jPpL5erINYjuRWptfeKw3Ft-2x5VTz2zH50yopFadptYYDZ2BXbduajKr9J4scH1q5xpqkrjfIxWYCDa3npshKWfw2Ke1d2BzSbFG2B4UwKkPJXnVeK8N2L3_wLsOWZGj6KQ3mKEz3wbt7FyZI7BJjjumLIJGjL_szkCXCJA_JpyhY7XNcfqHIXkceykqeSDo5WeY0oBsF-CE5lSHmTSTmB3DZbo3tjkLbnv3IaDYZrU-oHUIxiqPwCNA0jHrdDVUzqHHdJLDSfc8nGLtuwJkX8GOo_D1P5b-fF1DqjHvdWfe-_3gCO0L2IjKhqadQzJLP8IxsdeadSyF_AwJomOs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Allocation+of+shared+computing+resources+using+source+code+feature+extraction+and+machine+learning&rft.inventor=Calmon%2C+Tiago+Salviano&rft.inventor=Dias%2C+Jonas+F&rft.inventor=Prado%2C+Adriana+Bechara&rft.date=2023-01-31&rft.externalDBID=B2&rft.externalDocID=US11567807B2