Dielectric heterojunction device

A device is provided that comprises a first layer deposited onto a second layer. The second layer comprises a lightly doped n-type or p-type semiconductor drift layer, and the first layer comprises a high-k material with a dielectric constant that is at least two times higher than the value of the s...

Full description

Saved in:
Bibliographic Details
Main Authors Xia, Zhanbo, Moore, Wyatt, Rajan, Siddharth
Format Patent
LanguageEnglish
Published 18.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A device is provided that comprises a first layer deposited onto a second layer. The second layer comprises a lightly doped n-type or p-type semiconductor drift layer, and the first layer comprises a high-k material with a dielectric constant that is at least two times higher than the value of the second layer. A metal Schottky contact is formed on the first layer and a metal ohmic contact is formed on the second layer. Under reverse bias, the dielectric constant discontinuity leads to a very low electric field in the second layer, while the electron barrier created by the first layer stays almost flat. Under forward bias, electrons flow through the first layer, into the metal ohmic contact. For small values of conduction band offset or valence band offset between the first layer and the second layer, the device is expected to support efficient electron or hole transport.
Bibliography:Application Number: US202017002253