Modelling ordinary differential equations using a variational auto encoder
A computer-implemented method comprising: from each of multiple trials, obtaining a respective series of observations y(t) of a subject over time t; using a variational auto encoder to model an ordinary differential equation, ODE, wherein the variational auto encoder comprises an encoder for encodin...
Saved in:
Main Authors | , , |
---|---|
Format | Patent |
Language | English |
Published |
08.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Abstract | A computer-implemented method comprising: from each of multiple trials, obtaining a respective series of observations y(t) of a subject over time t; using a variational auto encoder to model an ordinary differential equation, ODE, wherein the variational auto encoder comprises an encoder for encoding the observations into a latent vector z and a decoder for decoding the latent vector, the encoder comprising a first neural network and the decoder comprising one or more second neural networks, wherein the ODE as modelled by the decoder has a state x(t) representing one or more physical properties of the subject which result in the observations y, and the decoder models a rate of change of x with respect to time t as a function f of at least x and z: dx/dt=f(x, z); and operating the variational auto encoder to learn the function f based on the obtained observations y. |
---|---|
AbstractList | A computer-implemented method comprising: from each of multiple trials, obtaining a respective series of observations y(t) of a subject over time t; using a variational auto encoder to model an ordinary differential equation, ODE, wherein the variational auto encoder comprises an encoder for encoding the observations into a latent vector z and a decoder for decoding the latent vector, the encoder comprising a first neural network and the decoder comprising one or more second neural networks, wherein the ODE as modelled by the decoder has a state x(t) representing one or more physical properties of the subject which result in the observations y, and the decoder models a rate of change of x with respect to time t as a function f of at least x and z: dx/dt=f(x, z); and operating the variational auto encoder to learn the function f based on the obtained observations y. |
Author | Meeds, Edward Dalchau, Neil Roeder, Geoffrey |
Author_xml | – fullname: Dalchau, Neil – fullname: Roeder, Geoffrey – fullname: Meeds, Edward |
BookMark | eNrjYmDJy89L5WTw8s1PSc3JycxLV8gvSsnMSyyqVEjJTEtLLUrNK8lMzFFILSxNLMnMzytWKC0GqUpUKEssygQLAWUTS0vyFVLzkoGGFPEwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUkvjQYENDA2MDI3NTJyNjYtQAAJ7sN4w |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
ExternalDocumentID | US11030275B2 |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_US11030275B23 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 14:47:44 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_US11030275B23 |
Notes | Application Number: US201916255778 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210608&DB=EPODOC&CC=US&NR=11030275B2 |
ParticipantIDs | epo_espacenet_US11030275B2 |
PublicationCentury | 2000 |
PublicationDate | 20210608 |
PublicationDateYYYYMMDD | 2021-06-08 |
PublicationDate_xml | – month: 06 year: 2021 text: 20210608 day: 08 |
PublicationDecade | 2020 |
PublicationYear | 2021 |
RelatedCompanies | Microsoft Technology Licensing, LLC |
RelatedCompanies_xml | – name: Microsoft Technology Licensing, LLC |
Score | 3.251495 |
Snippet | A computer-implemented method comprising: from each of multiple trials, obtaining a respective series of observations y(t) of a subject over time t; using a... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
Title | Modelling ordinary differential equations using a variational auto encoder |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210608&DB=EPODOC&locale=&CC=US&NR=11030275B2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD6MeX3Tqui8EEH6Vux6W1-K0BtjsAtulb2NpI1DkXaunf59T2LrfNHXFEJy4EvynX7nOwB33W7KLccRskGkKFbGXY3RZ6Zxi-op7RmOwUS-Yzhy-ok1mNvzFrw2tTDSJ_RTmiMiolLEeyXP69U2iRVKbWV5z15wqHiIZ16o1uwY-Yuju2roe9FkHI4DNQi8ZKqOHr2uaKdl9Gwfj-sdwzYdAeLoyRdVKavfV0p8BLsTnC2vjqHFcwUOgqbzmgL7w_qHtwJ7UqGZljhYo7A8gYFoYCa9tAlSR1lQS5pGJwjYN8Lfvw28SyJk7UtCyQdS4jrtR-imKojwr8z4-hRu42gW9DVc3uInFotkut2JeQbtvMj5ORCXIRPhKXUzRjHoGTOZLV4OKTICynXrAjp_z9P57-MlHIq4SnWUewXtar3h13gPV-xGBvALPTqN5Q |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT8IwEL4Q_IFvihrFXzUxeyOOMcZeFhM2lolsENkMb0u7FaMxA9nQf99rHeKLvrZJ015y137X774DuGm1Eq4bhqANIkTRU242GZ2xJtepmtCuZmhM5Dv8wPAifTDtTCvwuq6FkTqhn1IcET0qQX8vZLxebJJYjuRW5rfsBYfmd25oOUqJjhG_GKqpOD2rPx45I1uxbSuaKMGj1RLttLRup4fhegsDgClB21NPVKUsfl8p7j5sj3G1rDiACs_qULPXndfqsOuXH9512JEMzSTHwdIL80MYiAZmUkubIHSUBbVk3egEHfaN8PdvAe-cCFr7M6HkAyFxmfYjdFXMidCvTPnyCK7dfmh7Tdxe_GOLOJpsTtI-hmo2z_gJEJMhEuEJNVNG0egpa7OOeDkkiAgoV_VTaPy9TuO_ySuoeaE_jIf3wcMZ7AkbS6aUeQ7VYrniF3gnF-xSGvMLFlyQ3A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Modelling+ordinary+differential+equations+using+a+variational+auto+encoder&rft.inventor=Dalchau%2C+Neil&rft.inventor=Roeder%2C+Geoffrey&rft.inventor=Meeds%2C+Edward&rft.date=2021-06-08&rft.externalDBID=B2&rft.externalDocID=US11030275B2 |