Modelling ordinary differential equations using a variational auto encoder

A computer-implemented method comprising: from each of multiple trials, obtaining a respective series of observations y(t) of a subject over time t; using a variational auto encoder to model an ordinary differential equation, ODE, wherein the variational auto encoder comprises an encoder for encodin...

Full description

Saved in:
Bibliographic Details
Main Authors Dalchau, Neil, Roeder, Geoffrey, Meeds, Edward
Format Patent
LanguageEnglish
Published 08.06.2021
Subjects
Online AccessGet full text

Cover

Abstract A computer-implemented method comprising: from each of multiple trials, obtaining a respective series of observations y(t) of a subject over time t; using a variational auto encoder to model an ordinary differential equation, ODE, wherein the variational auto encoder comprises an encoder for encoding the observations into a latent vector z and a decoder for decoding the latent vector, the encoder comprising a first neural network and the decoder comprising one or more second neural networks, wherein the ODE as modelled by the decoder has a state x(t) representing one or more physical properties of the subject which result in the observations y, and the decoder models a rate of change of x with respect to time t as a function f of at least x and z: dx/dt=f(x, z); and operating the variational auto encoder to learn the function f based on the obtained observations y.
AbstractList A computer-implemented method comprising: from each of multiple trials, obtaining a respective series of observations y(t) of a subject over time t; using a variational auto encoder to model an ordinary differential equation, ODE, wherein the variational auto encoder comprises an encoder for encoding the observations into a latent vector z and a decoder for decoding the latent vector, the encoder comprising a first neural network and the decoder comprising one or more second neural networks, wherein the ODE as modelled by the decoder has a state x(t) representing one or more physical properties of the subject which result in the observations y, and the decoder models a rate of change of x with respect to time t as a function f of at least x and z: dx/dt=f(x, z); and operating the variational auto encoder to learn the function f based on the obtained observations y.
Author Meeds, Edward
Dalchau, Neil
Roeder, Geoffrey
Author_xml – fullname: Dalchau, Neil
– fullname: Roeder, Geoffrey
– fullname: Meeds, Edward
BookMark eNrjYmDJy89L5WTw8s1PSc3JycxLV8gvSsnMSyyqVEjJTEtLLUrNK8lMzFFILSxNLMnMzytWKC0GqUpUKEssygQLAWUTS0vyFVLzkoGGFPEwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUkvjQYENDA2MDI3NTJyNjYtQAAJ7sN4w
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
ExternalDocumentID US11030275B2
GroupedDBID EVB
ID FETCH-epo_espacenet_US11030275B23
IEDL.DBID EVB
IngestDate Fri Jul 19 14:47:44 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_US11030275B23
Notes Application Number: US201916255778
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210608&DB=EPODOC&CC=US&NR=11030275B2
ParticipantIDs epo_espacenet_US11030275B2
PublicationCentury 2000
PublicationDate 20210608
PublicationDateYYYYMMDD 2021-06-08
PublicationDate_xml – month: 06
  year: 2021
  text: 20210608
  day: 08
PublicationDecade 2020
PublicationYear 2021
RelatedCompanies Microsoft Technology Licensing, LLC
RelatedCompanies_xml – name: Microsoft Technology Licensing, LLC
Score 3.251495
Snippet A computer-implemented method comprising: from each of multiple trials, obtaining a respective series of observations y(t) of a subject over time t; using a...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
Title Modelling ordinary differential equations using a variational auto encoder
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210608&DB=EPODOC&locale=&CC=US&NR=11030275B2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD6MeX3Tqui8EEH6Vux6W1-K0BtjsAtulb2NpI1DkXaunf59T2LrfNHXFEJy4EvynX7nOwB33W7KLccRskGkKFbGXY3RZ6Zxi-op7RmOwUS-Yzhy-ok1mNvzFrw2tTDSJ_RTmiMiolLEeyXP69U2iRVKbWV5z15wqHiIZ16o1uwY-Yuju2roe9FkHI4DNQi8ZKqOHr2uaKdl9Gwfj-sdwzYdAeLoyRdVKavfV0p8BLsTnC2vjqHFcwUOgqbzmgL7w_qHtwJ7UqGZljhYo7A8gYFoYCa9tAlSR1lQS5pGJwjYN8Lfvw28SyJk7UtCyQdS4jrtR-imKojwr8z4-hRu42gW9DVc3uInFotkut2JeQbtvMj5ORCXIRPhKXUzRjHoGTOZLV4OKTICynXrAjp_z9P57-MlHIq4SnWUewXtar3h13gPV-xGBvALPTqN5Q
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT8IwEL4Q_IFvihrFXzUxeyOOMcZeFhM2lolsENkMb0u7FaMxA9nQf99rHeKLvrZJ015y137X774DuGm1Eq4bhqANIkTRU242GZ2xJtepmtCuZmhM5Dv8wPAifTDtTCvwuq6FkTqhn1IcET0qQX8vZLxebJJYjuRW5rfsBYfmd25oOUqJjhG_GKqpOD2rPx45I1uxbSuaKMGj1RLttLRup4fhegsDgClB21NPVKUsfl8p7j5sj3G1rDiACs_qULPXndfqsOuXH9512JEMzSTHwdIL80MYiAZmUkubIHSUBbVk3egEHfaN8PdvAe-cCFr7M6HkAyFxmfYjdFXMidCvTPnyCK7dfmh7Tdxe_GOLOJpsTtI-hmo2z_gJEJMhEuEJNVNG0egpa7OOeDkkiAgoV_VTaPy9TuO_ySuoeaE_jIf3wcMZ7AkbS6aUeQ7VYrniF3gnF-xSGvMLFlyQ3A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Modelling+ordinary+differential+equations+using+a+variational+auto+encoder&rft.inventor=Dalchau%2C+Neil&rft.inventor=Roeder%2C+Geoffrey&rft.inventor=Meeds%2C+Edward&rft.date=2021-06-08&rft.externalDBID=B2&rft.externalDocID=US11030275B2