Detector-tracker architecture
A machine-learning (ML) architecture may comprise a first ML model and/or an optical flow model that receive, as input, a first image and a second image. The first ML model may output a first feature map corresponding to the first image and a second feature map corresponding to the second image. The...
Saved in:
Main Authors | , |
---|---|
Format | Patent |
Language | English |
Published |
03.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A machine-learning (ML) architecture may comprise a first ML model and/or an optical flow model that receive, as input, a first image and a second image. The first ML model may output a first feature map corresponding to the first image and a second feature map corresponding to the second image. The optical flow model may output an estimated optical flow. A deformation component may modify the second feature map, as a deformed feature map, based at least in part on the estimated optical flow. The deformed feature map and the first feature map may be concatenated together as a concatenated feature map, which may be provided to a second ML model. The second ML model may be trained to output an output ROI and/or a track in association with an object represented in the first image. |
---|---|
AbstractList | A machine-learning (ML) architecture may comprise a first ML model and/or an optical flow model that receive, as input, a first image and a second image. The first ML model may output a first feature map corresponding to the first image and a second feature map corresponding to the second image. The optical flow model may output an estimated optical flow. A deformation component may modify the second feature map, as a deformed feature map, based at least in part on the estimated optical flow. The deformed feature map and the first feature map may be concatenated together as a concatenated feature map, which may be provided to a second ML model. The second ML model may be trained to output an output ROI and/or a track in association with an object represented in the first image. |
Author | Tariq, Sarah Tan, Qijun |
Author_xml | – fullname: Tariq, Sarah – fullname: Tan, Qijun |
BookMark | eNrjYmDJy89L5WSQdUktSU0uyS_SLSlKTM5OLVJILErOyASJlRal8jCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-NBgQwMLI1NDCwsnQ2Ni1AAAyqwmbA |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
ExternalDocumentID | US10825188B1 |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_US10825188B13 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 12:57:59 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_US10825188B13 |
Notes | Application Number: US201916297381 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201103&DB=EPODOC&CC=US&NR=10825188B1 |
ParticipantIDs | epo_espacenet_US10825188B1 |
PublicationCentury | 2000 |
PublicationDate | 20201103 |
PublicationDateYYYYMMDD | 2020-11-03 |
PublicationDate_xml | – month: 11 year: 2020 text: 20201103 day: 03 |
PublicationDecade | 2020 |
PublicationYear | 2020 |
RelatedCompanies | Zoox, Inc |
RelatedCompanies_xml | – name: Zoox, Inc |
Score | 3.294563 |
Snippet | A machine-learning (ML) architecture may comprise a first ML model and/or an optical flow model that receive, as input, a first image and a second image. The... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTING CONTROLLING COUNTING HANDLING RECORD CARRIERS IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS REGULATING SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES |
Title | Detector-tracker architecture |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201103&DB=EPODOC&locale=&CC=US&NR=10825188B1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LSsNAcCj1edOoaLVSQXJbJGaTbA5ByIsi9IFtpLeSXSegh1qalP6-kyW1veh1FmZnh52d9yzAY0HXRBaWz1zuOYzn4oOR2ywZoi85Ii-ULqIZDN1-xl9nzqwFX9teGD0ndKOHI5JEKZL3Sr_Xy10QK9a1leWT_CTQ90s6DWKz8Y61NrPNOAyS8SgeRWYUBdnEHL6RrVv3aAoRkqd0QGa0V0tD8h7WXSnLfZWSnsHhmLAtqnNo4cKAk2j785oBx4Mm4W3Aka7QVCUBGyksL6BLtOlgO6tWeV0W0dtPB1zCQ5pMoz6jHee_x5tnkx1x9hW0ye3Ha-jhs7A8aedKCuRSkF7PPcdCFxX3be46N9D5G0_nv8VbOK1ZpTvq7DtoV6s1dkm1VvJe8-QHhIF8pQ |
link.rule.ids | 230,309,783,888,25576,76876 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1dS8Mw8BjzY75pVXQ6nSB9C1KbtulDEfpF1bUbrpW9jaamoA9zrBX_vtfQub3o6wUulyOX-74A3JZ4TXip2cSklkFozt4Ius2cCGFzKgQtC1lEEydmlNGnmTHrwMe6F0bOCf2WwxFRogqU91q-18tNEMuXtZXVHX9H0OdDmDq-2nrHUpvpqu86wWTsjz3V85xsqiYvaOs2PZqMuegp7aCJbTXSELy6TVfKclulhIewO0Fsi_oIOmKhQM9b_7ymwH7cJrwV2JMVmkWFwFYKq2MYIG0y2E7qVd6URQy30wEncBMGqRcR3HH-e7x5Nt0Qp59CF91-cQZDcc80i-t5wZmgnKFezy1DE6YoqK1T0ziH_t94-v8tXkMvSuPRfPSYPF_AQcM22V2nX0K3Xn2JAarZml9J_vwAiC1_mA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Detector-tracker+architecture&rft.inventor=Tariq%2C+Sarah&rft.inventor=Tan%2C+Qijun&rft.date=2020-11-03&rft.externalDBID=B1&rft.externalDocID=US10825188B1 |