Detector-tracker architecture

A machine-learning (ML) architecture may comprise a first ML model and/or an optical flow model that receive, as input, a first image and a second image. The first ML model may output a first feature map corresponding to the first image and a second feature map corresponding to the second image. The...

Full description

Saved in:
Bibliographic Details
Main Authors Tariq, Sarah, Tan, Qijun
Format Patent
LanguageEnglish
Published 03.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A machine-learning (ML) architecture may comprise a first ML model and/or an optical flow model that receive, as input, a first image and a second image. The first ML model may output a first feature map corresponding to the first image and a second feature map corresponding to the second image. The optical flow model may output an estimated optical flow. A deformation component may modify the second feature map, as a deformed feature map, based at least in part on the estimated optical flow. The deformed feature map and the first feature map may be concatenated together as a concatenated feature map, which may be provided to a second ML model. The second ML model may be trained to output an output ROI and/or a track in association with an object represented in the first image.
AbstractList A machine-learning (ML) architecture may comprise a first ML model and/or an optical flow model that receive, as input, a first image and a second image. The first ML model may output a first feature map corresponding to the first image and a second feature map corresponding to the second image. The optical flow model may output an estimated optical flow. A deformation component may modify the second feature map, as a deformed feature map, based at least in part on the estimated optical flow. The deformed feature map and the first feature map may be concatenated together as a concatenated feature map, which may be provided to a second ML model. The second ML model may be trained to output an output ROI and/or a track in association with an object represented in the first image.
Author Tariq, Sarah
Tan, Qijun
Author_xml – fullname: Tariq, Sarah
– fullname: Tan, Qijun
BookMark eNrjYmDJy89L5WSQdUktSU0uyS_SLSlKTM5OLVJILErOyASJlRal8jCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-NBgQwMLI1NDCwsnQ2Ni1AAAyqwmbA
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
ExternalDocumentID US10825188B1
GroupedDBID EVB
ID FETCH-epo_espacenet_US10825188B13
IEDL.DBID EVB
IngestDate Fri Jul 19 12:57:59 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_US10825188B13
Notes Application Number: US201916297381
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201103&DB=EPODOC&CC=US&NR=10825188B1
ParticipantIDs epo_espacenet_US10825188B1
PublicationCentury 2000
PublicationDate 20201103
PublicationDateYYYYMMDD 2020-11-03
PublicationDate_xml – month: 11
  year: 2020
  text: 20201103
  day: 03
PublicationDecade 2020
PublicationYear 2020
RelatedCompanies Zoox, Inc
RelatedCompanies_xml – name: Zoox, Inc
Score 3.294563
Snippet A machine-learning (ML) architecture may comprise a first ML model and/or an optical flow model that receive, as input, a first image and a second image. The...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTING
CONTROLLING
COUNTING
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
REGULATING
SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
Title Detector-tracker architecture
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201103&DB=EPODOC&locale=&CC=US&NR=10825188B1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LSsNAcCj1edOoaLVSQXJbJGaTbA5ByIsi9IFtpLeSXSegh1qalP6-kyW1veh1FmZnh52d9yzAY0HXRBaWz1zuOYzn4oOR2ywZoi85Ii-ULqIZDN1-xl9nzqwFX9teGD0ndKOHI5JEKZL3Sr_Xy10QK9a1leWT_CTQ90s6DWKz8Y61NrPNOAyS8SgeRWYUBdnEHL6RrVv3aAoRkqd0QGa0V0tD8h7WXSnLfZWSnsHhmLAtqnNo4cKAk2j785oBx4Mm4W3Aka7QVCUBGyksL6BLtOlgO6tWeV0W0dtPB1zCQ5pMoz6jHee_x5tnkx1x9hW0ye3Ha-jhs7A8aedKCuRSkF7PPcdCFxX3be46N9D5G0_nv8VbOK1ZpTvq7DtoV6s1dkm1VvJe8-QHhIF8pQ
link.rule.ids 230,309,783,888,25576,76876
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1dS8Mw8BjzY75pVXQ6nSB9C1KbtulDEfpF1bUbrpW9jaamoA9zrBX_vtfQub3o6wUulyOX-74A3JZ4TXip2cSklkFozt4Ius2cCGFzKgQtC1lEEydmlNGnmTHrwMe6F0bOCf2WwxFRogqU91q-18tNEMuXtZXVHX9H0OdDmDq-2nrHUpvpqu86wWTsjz3V85xsqiYvaOs2PZqMuegp7aCJbTXSELy6TVfKclulhIewO0Fsi_oIOmKhQM9b_7ymwH7cJrwV2JMVmkWFwFYKq2MYIG0y2E7qVd6URQy30wEncBMGqRcR3HH-e7x5Nt0Qp59CF91-cQZDcc80i-t5wZmgnKFezy1DE6YoqK1T0ziH_t94-v8tXkMvSuPRfPSYPF_AQcM22V2nX0K3Xn2JAarZml9J_vwAiC1_mA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Detector-tracker+architecture&rft.inventor=Tariq%2C+Sarah&rft.inventor=Tan%2C+Qijun&rft.date=2020-11-03&rft.externalDBID=B1&rft.externalDocID=US10825188B1