Deep learning-based framework for identifying sequence patterns that cause sequence-specific errors (sses)

The technology disclosed presents a deep learning-based framework, which identifies sequence patterns that cause sequence-specific errors (SSEs). Systems and methods train a variant filter on large-scale variant data to learn causal dependencies between sequence patterns and false variant calls. The...

Full description

Saved in:
Bibliographic Details
Main Authors Kashefhaghighi, Dorna, Kia, Amirali, Farh, Kai-How
Format Patent
LanguageEnglish
Published 27.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The technology disclosed presents a deep learning-based framework, which identifies sequence patterns that cause sequence-specific errors (SSEs). Systems and methods train a variant filter on large-scale variant data to learn causal dependencies between sequence patterns and false variant calls. The variant filter has a hierarchical structure built on deep neural networks such as convolutional neural networks and fully-connected neural networks. Systems and methods implement a simulation that uses the variant filter to test known sequence patterns for their effect on variant filtering. The premise of the simulation is as follows: when a pair of a repeat pattern under test and a called variant is fed to the variant filter as part of a simulated input sequence and the variant filter classifies the called variant as a false variant call, then the repeat pattern is considered to have caused the false variant call and identified as SSE-causing.
AbstractList The technology disclosed presents a deep learning-based framework, which identifies sequence patterns that cause sequence-specific errors (SSEs). Systems and methods train a variant filter on large-scale variant data to learn causal dependencies between sequence patterns and false variant calls. The variant filter has a hierarchical structure built on deep neural networks such as convolutional neural networks and fully-connected neural networks. Systems and methods implement a simulation that uses the variant filter to test known sequence patterns for their effect on variant filtering. The premise of the simulation is as follows: when a pair of a repeat pattern under test and a called variant is fed to the variant filter as part of a simulated input sequence and the variant filter classifies the called variant as a false variant call, then the repeat pattern is considered to have caused the false variant call and identified as SSE-causing.
Author Farh, Kai-How
Kia, Amirali
Kashefhaghighi, Dorna
Author_xml – fullname: Kashefhaghighi, Dorna
– fullname: Kia, Amirali
– fullname: Farh, Kai-How
BookMark eNqFyrsSAUEQRuENCNxeQXVIsBHKCpVLiUQiydaY_Ydh9Yzu2VLenkBJRSf4TjdrcWB0susaiFTDCHs-5yejqMiJueMZ5EYuCPkKnLx7fZwUjwZsQdGkBGGldDGJrGkUP8w1wnrnLUEkiNJIFTruZ21nasXg21423G4Oq12OGEpoNBaMVO6P89miKKbLyd_hDaK8QjY
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
ExternalDocumentID NZ759884A
GroupedDBID EVB
ID FETCH-epo_espacenet_NZ759884A3
IEDL.DBID EVB
IngestDate Fri Oct 25 05:39:16 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_NZ759884A3
Notes Application Number: NZ20190759884
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230127&DB=EPODOC&CC=NZ&NR=759884A
ParticipantIDs epo_espacenet_NZ759884A
PublicationCentury 2000
PublicationDate 20230127
PublicationDateYYYYMMDD 2023-01-27
PublicationDate_xml – month: 01
  year: 2023
  text: 20230127
  day: 27
PublicationDecade 2020
PublicationYear 2023
RelatedCompanies ILLUMINA INC
RelatedCompanies_xml – name: ILLUMINA INC
Score 3.444909
Snippet The technology disclosed presents a deep learning-based framework, which identifies sequence patterns that cause sequence-specific errors (SSEs). Systems and...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
Title Deep learning-based framework for identifying sequence patterns that cause sequence-specific errors (sses)
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230127&DB=EPODOC&locale=&CC=NZ&NR=759884A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3da8IwED-c-3zb3Ny35GGU7SHM1rbRhzJmq8jAKsMN8UWSNnXuoS1tZf_-ktC6vfh6gZAcXO5y9_vdATzQgLLICNs4ZJxiyZXEzKIGtiPa4YRZnKjxbWPfHn2Yb3NrXoNVxYVRfUJ_VHNEYVGBsPdCvdfpXxLLU9jK_JmthSh5Gc4cTyt_xyKe1g2ieX1nMJ14E1dzXcdfaP67Q6xet2u-7sG-iKGJNIXBZ19SUtL__mR4CgdTsVVcnEGNxw04dquxaw04GpfV7gYcKnhmkAthaYL5OXx7nKeoHPawwtILhSiqIFZIxKBorci3isCEKqg0SlUjzThHxRctUEA3Od8uYsm3lJghxLMsyXL0KEvBTxfQGg5m7giL4y-3ilr6i_KanSbU4yTmV4D0iImILtStgIqfAye9Nu_pZmiEzLQj1rGv4XLHJjc7V27hROpaZiIMcgf1Itvwe-GbC9ZSev0FzOaYMw
link.rule.ids 230,309,783,888,25576,76876
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lb8IwDLYYe7Dbxt4PlsNUbYcIWvqAQzWNFsQ2KGhiE-KCkjZl7FCqtmh_f0nUsl24OlKUWHLs2N9nA9wTn9BQCxo4oIxgwZXE1CAaNkPSZBY1mCXHtw09s_-hv06NaQkWBRdG9gn9kc0RuUX53N4z-V7Hf0ksV2Ir0zpdctHqqTexXSX_HfN4WtUsxe3Y3fHIHTmK49jeTPHebctot1r68w7s8vjaEqbQ_ewISkr835_0jmBvzLeKsmMosagKFacYu1aFg2Fe7a7CvoRn-ikX5iaYnsC3y1iM8mEPCyy8UIDCAmKFeAyKlpJ8KwlMqIBKo1g20oxSlH2RDPlknbLNIhZ8S4EZQixJVkmKHkQp-PEUar3uxOljfvz5RlFzb5Zfs3kG5WgVsQtAakh5RBeohk_4z4FZ7QZrq3qgBVQ3Q9o0L-F8yyZXW1fuoNKfDAfzwYv3dg2HQu8iK6FZN1DOkjW75X46ozWp418dXJsm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Deep+learning-based+framework+for+identifying+sequence+patterns+that+cause+sequence-specific+errors+%28sses%29&rft.inventor=Kashefhaghighi%2C+Dorna&rft.inventor=Kia%2C+Amirali&rft.inventor=Farh%2C+Kai-How&rft.date=2023-01-27&rft.externalDBID=A&rft.externalDocID=NZ759884A