DEEP LEARNING TECHNIQUES FOR GENERATING MAGNETIC RESONANCE IMAGES FROM SPATIAL FREQUENCY DATA
Techniques for generating magnetic resonance (MR) images of a subject from MR data obtained by a magnetic resonance imaging (MRI) system, the techniques comprising: obtaining input MR spatial frequency data obtained by imaging the subject using the MRI system; generating an MR image of the subject f...
Saved in:
Main Authors | , , , , , , , |
---|---|
Format | Patent |
Language | English Spanish |
Published |
14.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Techniques for generating magnetic resonance (MR) images of a subject from MR data obtained by a magnetic resonance imaging (MRI) system, the techniques comprising: obtaining input MR spatial frequency data obtained by imaging the subject using the MRI system; generating an MR image of the subject from the input MR spatial frequency data using a neural network model comprising: a pre-reconstruction neural network configured to process the input MR spatial frequency data; a reconstruction neural network configured to generate at least one initial image of the subject from output of the pre-reconstruction neural network; and a post-reconstruction neural network configured to generate the MR image of the subject from the at least one initial image of the subject.
Técnicas para generar imágenes de resonancia magnética (RM) de un sujeto a partir de datos de RM obtenidos por un sistema de formación de imágenes de resonancia magnética (IRM), las técnicas comprendiendo: obtener datos de entrada de frecuencia espacial de RM obtenidos por formación de imagen del sujeto usando el sistema de IRM; generar una imagen de RM del sujeto a partir de los datos de entrada de frecuencia espacial de RM usando un modelo de red neuronal que comprende: una red neuronal de pre-construcción configurada para procesar los datos de entrada de frecuencia espacial de RM; una red neuronal de reconstrucción configurada para generar al menos una imagen inicial del sujeto a partir de la salida de la red neuronal de pre-construcción; y una red neuronal de post-construcción configurada para generar la imagen de RM del sujeto desde al menos una imagen inicial de sujeto. |
---|---|
AbstractList | Techniques for generating magnetic resonance (MR) images of a subject from MR data obtained by a magnetic resonance imaging (MRI) system, the techniques comprising: obtaining input MR spatial frequency data obtained by imaging the subject using the MRI system; generating an MR image of the subject from the input MR spatial frequency data using a neural network model comprising: a pre-reconstruction neural network configured to process the input MR spatial frequency data; a reconstruction neural network configured to generate at least one initial image of the subject from output of the pre-reconstruction neural network; and a post-reconstruction neural network configured to generate the MR image of the subject from the at least one initial image of the subject.
Técnicas para generar imágenes de resonancia magnética (RM) de un sujeto a partir de datos de RM obtenidos por un sistema de formación de imágenes de resonancia magnética (IRM), las técnicas comprendiendo: obtener datos de entrada de frecuencia espacial de RM obtenidos por formación de imagen del sujeto usando el sistema de IRM; generar una imagen de RM del sujeto a partir de los datos de entrada de frecuencia espacial de RM usando un modelo de red neuronal que comprende: una red neuronal de pre-construcción configurada para procesar los datos de entrada de frecuencia espacial de RM; una red neuronal de reconstrucción configurada para generar al menos una imagen inicial del sujeto a partir de la salida de la red neuronal de pre-construcción; y una red neuronal de post-construcción configurada para generar la imagen de RM del sujeto desde al menos una imagen inicial de sujeto. |
Author | SOFKA Michal DYVORNE Hadrien A O''HALLORAN Rafael SCHLEMPER Jo SACOLICK Laura MOSHEN SALEHI Seyed Sadegh LAZARUS Carole KUNDU Prantik |
Author_xml | – fullname: SACOLICK Laura – fullname: KUNDU Prantik – fullname: O''HALLORAN Rafael – fullname: DYVORNE Hadrien A – fullname: MOSHEN SALEHI Seyed Sadegh – fullname: SOFKA Michal – fullname: SCHLEMPER Jo – fullname: LAZARUS Carole |
BookMark | eNqNi00KwjAQhbPQhX93GNwLTe0FhnSaBtpJTSPoQkqRuJK2UO-PKXgAV4_3vu9txWoYh7ARj5yogYrQsWENnlTJ5nKlFgrrQBOTQ7-QGjWTNwoctZaRFYGJ2yI6W0PbRA2rWCi-Wd0hR497sX717zkcfrkTx4K8Kk9hGrswT_0zDOHT1bc0SWUipUwzPP8lfQGHwjSk |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | TECNICAS DE APRENDIZAJE PROFUNDO PARA GENERAR IMAGENES POR RESONANCIA MAGNETICA A PARTIR DE DATOS DE FRECUENCIA ESPACIAL. |
ExternalDocumentID | MX2021011124A |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_MX2021011124A3 |
IEDL.DBID | EVB |
IngestDate | Fri Oct 11 05:28:58 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English Spanish |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_MX2021011124A3 |
Notes | Application Number: MX2021011124 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211014&DB=EPODOC&CC=MX&NR=2021011124A |
ParticipantIDs | epo_espacenet_MX2021011124A |
PublicationCentury | 2000 |
PublicationDate | 20211014 |
PublicationDateYYYYMMDD | 2021-10-14 |
PublicationDate_xml | – month: 10 year: 2021 text: 20211014 day: 14 |
PublicationDecade | 2020 |
PublicationYear | 2021 |
RelatedCompanies | HYPERFINE, INC |
RelatedCompanies_xml | – name: HYPERFINE, INC |
Score | 3.2094028 |
Snippet | Techniques for generating magnetic resonance (MR) images of a subject from MR data obtained by a magnetic resonance imaging (MRI) system, the techniques... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DIAGNOSIS HUMAN NECESSITIES HYGIENE IDENTIFICATION IMAGE DATA PROCESSING OR GENERATION, IN GENERAL MEASURING MEASURING ELECTRIC VARIABLES MEASURING MAGNETIC VARIABLES MEDICAL OR VETERINARY SCIENCE PHYSICS SURGERY TESTING |
Title | DEEP LEARNING TECHNIQUES FOR GENERATING MAGNETIC RESONANCE IMAGES FROM SPATIAL FREQUENCY DATA |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211014&DB=EPODOC&locale=&CC=MX&NR=2021011124A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1dT8Iw8IKo6JuiRkVNY8zeFvnoNvZAzOgKzLBuwjTzwRD2lRgTIDLj3_c6QXnisb3rpb3kenftfQDcRRS9G3NaV9MmNVQaJbpqRnpLNduZZmRRrE11me_sCn3wTB9DLSzBxzoXpqgT-l0UR0SJilHe8-K-Xvw_YtlFbOXyPnrHqflDL-jYyso7lt5Mgyp2t8N9z_aYwljHDRUxKmCyrXqTWjuwi3a0IeO_-EtXpqUsNnVK7wj2fCQ3y4-hlC6rcMDWrdeqUHFXP95V2C9CNGNEqKzEcHkCbzbnPhlyayQc0ScBZwPhPD3zMUGfjvxGowUS4lp9wQOHEeSzJ2QfGuLgnEQceS4Z-4hmDXHAcbVgr8S2AusUbns8YAMVdzz548_EDTdO1zqD8mw-S8-B1LXYqCe0ZcRZg2YJWiKJEVETba621o7j9AJqWwhdboXW4FCO5C3eoFdQzj-_0mtUz3l0U7D1B1PSivI |
link.rule.ids | 230,309,783,888,25578,76884 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1dT8Iw8IKo4JuiRsWPxpi9LfLRbfBAzOgKm27dhGHwwRD2QWJMgAjGv-91gvLEY3vXS3vJ9e7a-wC4iyh6N81xRU1r1FBplOhqM9LrarMx0YxJFGtjXeY7e0K3B_RxqA1z8LHOhcnqhH5nxRFRomKU92V2X8__H7GsLLZycR-949TsoRO2LGXlHUtvpkoVq93igW_5TGGs5Q0V0ctgsq16jZo7sIs2dkMW2ucvbZmWMt_UKZ1D2AuQ3HR5BLl0UYIiW7deK0HBW_14l2A_C9GMEaGwEsPFMbxZnAfE5WZPOKJLQs5s4TwPeJ-gT0d-o9FCCfHMruChwwjy2ReyDw1xcE4i9nyP9ANEM10ccFwt2CuxzNA8gdsOD5mt4o5Hf_wZecON09VPIT-dTdMzIBUtNioJrRvxpEonCVoiiRHRJtpcDa0Rx-k5lLcQutgKvYGiHXruyHXEUxkOJETe6FV6Cfnl51d6hap6GV1nLP4BAS-N4g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=DEEP+LEARNING+TECHNIQUES+FOR+GENERATING+MAGNETIC+RESONANCE+IMAGES+FROM+SPATIAL+FREQUENCY+DATA&rft.inventor=SACOLICK+Laura&rft.inventor=KUNDU+Prantik&rft.inventor=O%27%27HALLORAN+Rafael&rft.inventor=DYVORNE+Hadrien+A&rft.inventor=MOSHEN+SALEHI+Seyed+Sadegh&rft.inventor=SOFKA+Michal&rft.inventor=SCHLEMPER+Jo&rft.inventor=LAZARUS+Carole&rft.date=2021-10-14&rft.externalDBID=A&rft.externalDocID=MX2021011124A |