CCTV METHOD AND APPARATUS FOR URBAN TRAFFIC NETWORK MODELING WITH MULTIPLE CCTV VIDEOS

The present invention relates to a method for modeling an urban traffic network using a plurality of CCTV videos, which provides a real-time traffic flow analysis result and future traffic flow prediction result of a city, and an apparatus thereof. According to one embodiment of the present inventio...

Full description

Saved in:
Bibliographic Details
Main Authors YEON HAN BYUL, SEO SEONG BUM, JANG YUN
Format Patent
LanguageEnglish
Korean
Published 13.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The present invention relates to a method for modeling an urban traffic network using a plurality of CCTV videos, which provides a real-time traffic flow analysis result and future traffic flow prediction result of a city, and an apparatus thereof. According to one embodiment of the present invention, the method comprises the following steps: (a) collecting videos from a plurality of CCTV networks and sampling the video by adjusting a sampling frequency according to a speed change of a vehicle; (b) generating vehicle flow data from the sampled video on the basis of a preset vehicle tracking algorithm; (c) combining the generated vehicle flow data and the plurality of CCTV networks including each CCTV location information to generate an incomplete traffic network in which observed data and non-observed data are identified; and (d) generating missing data for first non-observed data and second non-observed data through a missing data prediction model, and modeling a urban traffic network in which the observed data and the missing data are merged. 본 발명의 일 실시예에 따른 장치에 의해 수행되는 다중 CCTV 비디오를 이용한 도시 교통 네트워크 모델링 방법은 (a) 다중 CCTV 네트워크로부터 비디오를 수집하되, 차량의 속도 변화에 따른 샘플링 빈도를 조절하여 비디오를 샘플링하는 단계; (b) 기설정된 차량 추적 알고리즘에 기초하여 샘플링된 비디오로부터 차량 흐름 데이터를 생성하는 단계; (c) 생성된 차량 흐름 데이터와 각 CCTV 위치정보를 포함한 다중 CCTV 네트워크를 결합하여 관측 데이터와 비관측 데이터가 식별되는 불완전한 교통 네트워크를 생성하는 단계; 및 (d) 누락 데이터 예측 모델을 통해 제1비관측 데이터 및 제2비관측 데이터에 대한 누락 데이터를 생성한 후, 관측 데이터 및 누락 데이터가 병합된 도시 교통 네트워크를 모델링하는 단계;를 포함한다.
AbstractList The present invention relates to a method for modeling an urban traffic network using a plurality of CCTV videos, which provides a real-time traffic flow analysis result and future traffic flow prediction result of a city, and an apparatus thereof. According to one embodiment of the present invention, the method comprises the following steps: (a) collecting videos from a plurality of CCTV networks and sampling the video by adjusting a sampling frequency according to a speed change of a vehicle; (b) generating vehicle flow data from the sampled video on the basis of a preset vehicle tracking algorithm; (c) combining the generated vehicle flow data and the plurality of CCTV networks including each CCTV location information to generate an incomplete traffic network in which observed data and non-observed data are identified; and (d) generating missing data for first non-observed data and second non-observed data through a missing data prediction model, and modeling a urban traffic network in which the observed data and the missing data are merged. 본 발명의 일 실시예에 따른 장치에 의해 수행되는 다중 CCTV 비디오를 이용한 도시 교통 네트워크 모델링 방법은 (a) 다중 CCTV 네트워크로부터 비디오를 수집하되, 차량의 속도 변화에 따른 샘플링 빈도를 조절하여 비디오를 샘플링하는 단계; (b) 기설정된 차량 추적 알고리즘에 기초하여 샘플링된 비디오로부터 차량 흐름 데이터를 생성하는 단계; (c) 생성된 차량 흐름 데이터와 각 CCTV 위치정보를 포함한 다중 CCTV 네트워크를 결합하여 관측 데이터와 비관측 데이터가 식별되는 불완전한 교통 네트워크를 생성하는 단계; 및 (d) 누락 데이터 예측 모델을 통해 제1비관측 데이터 및 제2비관측 데이터에 대한 누락 데이터를 생성한 후, 관측 데이터 및 누락 데이터가 병합된 도시 교통 네트워크를 모델링하는 단계;를 포함한다.
Author SEO SEONG BUM
YEON HAN BYUL
JANG YUN
Author_xml – fullname: YEON HAN BYUL
– fullname: SEO SEONG BUM
– fullname: JANG YUN
BookMark eNqNjEsKwjAUALPQhb87PHAthJYeIOZjQtukpC_pshSJK0kL9f4o4gFcDLMZZk82ec5pRyLnGKGVqJ0AZj90HfMMQw_KeQj-yiygZ0oZDlbi4HwNrROyMfYGg0ENbWjQdI2E7yoaIV1_JNvH9FzT6ecDOSuJXF_SMo9pXaZ7yuk11r6gRUEprcqqZOV_1RuFGzMx
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
DocumentTitleAlternate 다중 CCTV 비디오를 이용한 도시 교통 네트워크 모델링 방법 및 장치
ExternalDocumentID KR20220005353A
GroupedDBID EVB
ID FETCH-epo_espacenet_KR20220005353A3
IEDL.DBID EVB
IngestDate Fri Aug 30 05:41:20 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
Korean
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_KR20220005353A3
Notes Application Number: KR20200083107
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220113&DB=EPODOC&CC=KR&NR=20220005353A
ParticipantIDs epo_espacenet_KR20220005353A
PublicationCentury 2000
PublicationDate 20220113
PublicationDateYYYYMMDD 2022-01-13
PublicationDate_xml – month: 01
  year: 2022
  text: 20220113
  day: 13
PublicationDecade 2020
PublicationYear 2022
RelatedCompanies INDUSTRY ACADEMY COOPERATION FOUNDATION OF SEJONG UNIVERSITY
RelatedCompanies_xml – name: INDUSTRY ACADEMY COOPERATION FOUNDATION OF SEJONG UNIVERSITY
Score 3.332014
Snippet The present invention relates to a method for modeling an urban traffic network using a plurality of CCTV videos, which provides a real-time traffic flow...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
PHYSICS
PICTORIAL COMMUNICATION, e.g. TELEVISION
SIGNALLING
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
TRAFFIC CONTROL SYSTEMS
Title CCTV METHOD AND APPARATUS FOR URBAN TRAFFIC NETWORK MODELING WITH MULTIPLE CCTV VIDEOS
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220113&DB=EPODOC&locale=&CC=KR&NR=20220005353A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8gfr4pavxA00Szt8WwT_ZAzGg7N2EfGd3gjbAxEqMBIjP--3YVlCce-tBecmkvud79rr07gEerrVhFyzLl6SzPZK2YGvJEUUyOeWazvF2Yhi76kPmB4Sba60gf1eBjkwsj6oR-i-KIXKNyru-luK-X_0EsIv5Wrp6yN760eHZYh0hrdKxU5kyVSLdDo5CEWMK404ulIP6liWImqr0H-9yRNit9oGm3yktZbhsV5xQOIs5vXp5B7X3RgGO86b3WgCN__eTdgEPxRzNf8cW1Hq7OIcWYpcinzA0JsgM-osiObZYMEEd1KIm7doBYbDuOh1FA2TCMe8gPCe17wQsaesxFftJnXtSnSLBKPULDwQU8OJRhV-ZbHf9JZtyLt8-lXkJ9vpgXV4AU08iMtm5OuD-l6boyqWCLpXH8N-VW0ciuobmL081u8i2cVNMqEtFSm1AvP7-KO26by-xeiPQHZpyJSA
link.rule.ids 230,309,783,888,25576,76876
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bT8IwFD5BvOCbosYLahPN3hbDruyBmNF1bu6a0Q3eCBsjMRoggvHv21VQnnjoS09y0p7k9OvXngvAo9GRjLJt6OJkWuSiUk40cSxJOuM802nRKXVN5X3IglBzUuV1qA5r8LHJheF1Qr95cUTmUQXz9xU_rxf_j1gWj61cPuVvbGr-bNOuJazZsVTBmSxYvS6JIyvCAsZdLxHC5FfGi5nI5h7ss0u2XvkDyXpVXspiG1TsEziImb7Z6hRq7_MmNPCm91oTjoL1l3cTDnmMZrFkk2s_XJ5BhjHNUECoE1nIDNmIYzMxadpHjNWhNOmZIaKJadsuRiGhgyjxUBBZxHfDFzRwqYOC1Kdu7BPEVWWuRaL-OTzYhGJHZEsd_Vlm5CXb-5IvoD6bz8pLQJKu5VpH1cfsPqWoqjSuaIuhMP43Yaio5VfQ2qXperf4HhoODfwRW7N3A8eVqHqVaMstqK8-v8pbhtOr_I6b9wcEGow7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=CCTV+METHOD+AND+APPARATUS+FOR+URBAN+TRAFFIC+NETWORK+MODELING+WITH+MULTIPLE+CCTV+VIDEOS&rft.inventor=YEON+HAN+BYUL&rft.inventor=SEO+SEONG+BUM&rft.inventor=JANG+YUN&rft.date=2022-01-13&rft.externalDBID=A&rft.externalDocID=KR20220005353A