CCTV METHOD AND APPARATUS FOR URBAN TRAFFIC NETWORK MODELING WITH MULTIPLE CCTV VIDEOS
The present invention relates to a method for modeling an urban traffic network using a plurality of CCTV videos, which provides a real-time traffic flow analysis result and future traffic flow prediction result of a city, and an apparatus thereof. According to one embodiment of the present inventio...
Saved in:
Main Authors | , , |
---|---|
Format | Patent |
Language | English Korean |
Published |
13.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The present invention relates to a method for modeling an urban traffic network using a plurality of CCTV videos, which provides a real-time traffic flow analysis result and future traffic flow prediction result of a city, and an apparatus thereof. According to one embodiment of the present invention, the method comprises the following steps: (a) collecting videos from a plurality of CCTV networks and sampling the video by adjusting a sampling frequency according to a speed change of a vehicle; (b) generating vehicle flow data from the sampled video on the basis of a preset vehicle tracking algorithm; (c) combining the generated vehicle flow data and the plurality of CCTV networks including each CCTV location information to generate an incomplete traffic network in which observed data and non-observed data are identified; and (d) generating missing data for first non-observed data and second non-observed data through a missing data prediction model, and modeling a urban traffic network in which the observed data and the missing data are merged.
본 발명의 일 실시예에 따른 장치에 의해 수행되는 다중 CCTV 비디오를 이용한 도시 교통 네트워크 모델링 방법은 (a) 다중 CCTV 네트워크로부터 비디오를 수집하되, 차량의 속도 변화에 따른 샘플링 빈도를 조절하여 비디오를 샘플링하는 단계; (b) 기설정된 차량 추적 알고리즘에 기초하여 샘플링된 비디오로부터 차량 흐름 데이터를 생성하는 단계; (c) 생성된 차량 흐름 데이터와 각 CCTV 위치정보를 포함한 다중 CCTV 네트워크를 결합하여 관측 데이터와 비관측 데이터가 식별되는 불완전한 교통 네트워크를 생성하는 단계; 및 (d) 누락 데이터 예측 모델을 통해 제1비관측 데이터 및 제2비관측 데이터에 대한 누락 데이터를 생성한 후, 관측 데이터 및 누락 데이터가 병합된 도시 교통 네트워크를 모델링하는 단계;를 포함한다. |
---|---|
AbstractList | The present invention relates to a method for modeling an urban traffic network using a plurality of CCTV videos, which provides a real-time traffic flow analysis result and future traffic flow prediction result of a city, and an apparatus thereof. According to one embodiment of the present invention, the method comprises the following steps: (a) collecting videos from a plurality of CCTV networks and sampling the video by adjusting a sampling frequency according to a speed change of a vehicle; (b) generating vehicle flow data from the sampled video on the basis of a preset vehicle tracking algorithm; (c) combining the generated vehicle flow data and the plurality of CCTV networks including each CCTV location information to generate an incomplete traffic network in which observed data and non-observed data are identified; and (d) generating missing data for first non-observed data and second non-observed data through a missing data prediction model, and modeling a urban traffic network in which the observed data and the missing data are merged.
본 발명의 일 실시예에 따른 장치에 의해 수행되는 다중 CCTV 비디오를 이용한 도시 교통 네트워크 모델링 방법은 (a) 다중 CCTV 네트워크로부터 비디오를 수집하되, 차량의 속도 변화에 따른 샘플링 빈도를 조절하여 비디오를 샘플링하는 단계; (b) 기설정된 차량 추적 알고리즘에 기초하여 샘플링된 비디오로부터 차량 흐름 데이터를 생성하는 단계; (c) 생성된 차량 흐름 데이터와 각 CCTV 위치정보를 포함한 다중 CCTV 네트워크를 결합하여 관측 데이터와 비관측 데이터가 식별되는 불완전한 교통 네트워크를 생성하는 단계; 및 (d) 누락 데이터 예측 모델을 통해 제1비관측 데이터 및 제2비관측 데이터에 대한 누락 데이터를 생성한 후, 관측 데이터 및 누락 데이터가 병합된 도시 교통 네트워크를 모델링하는 단계;를 포함한다. |
Author | SEO SEONG BUM YEON HAN BYUL JANG YUN |
Author_xml | – fullname: YEON HAN BYUL – fullname: SEO SEONG BUM – fullname: JANG YUN |
BookMark | eNqNjEsKwjAUALPQhb87PHAthJYeIOZjQtukpC_pshSJK0kL9f4o4gFcDLMZZk82ec5pRyLnGKGVqJ0AZj90HfMMQw_KeQj-yiygZ0oZDlbi4HwNrROyMfYGg0ENbWjQdI2E7yoaIV1_JNvH9FzT6ecDOSuJXF_SMo9pXaZ7yuk11r6gRUEprcqqZOV_1RuFGzMx |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | 다중 CCTV 비디오를 이용한 도시 교통 네트워크 모델링 방법 및 장치 |
ExternalDocumentID | KR20220005353A |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_KR20220005353A3 |
IEDL.DBID | EVB |
IngestDate | Fri Aug 30 05:41:20 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English Korean |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_KR20220005353A3 |
Notes | Application Number: KR20200083107 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220113&DB=EPODOC&CC=KR&NR=20220005353A |
ParticipantIDs | epo_espacenet_KR20220005353A |
PublicationCentury | 2000 |
PublicationDate | 20220113 |
PublicationDateYYYYMMDD | 2022-01-13 |
PublicationDate_xml | – month: 01 year: 2022 text: 20220113 day: 13 |
PublicationDecade | 2020 |
PublicationYear | 2022 |
RelatedCompanies | INDUSTRY ACADEMY COOPERATION FOUNDATION OF SEJONG UNIVERSITY |
RelatedCompanies_xml | – name: INDUSTRY ACADEMY COOPERATION FOUNDATION OF SEJONG UNIVERSITY |
Score | 3.332014 |
Snippet | The present invention relates to a method for modeling an urban traffic network using a plurality of CCTV videos, which provides a real-time traffic flow... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC COMMUNICATION TECHNIQUE ELECTRICITY PHYSICS PICTORIAL COMMUNICATION, e.g. TELEVISION SIGNALLING SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR TRAFFIC CONTROL SYSTEMS |
Title | CCTV METHOD AND APPARATUS FOR URBAN TRAFFIC NETWORK MODELING WITH MULTIPLE CCTV VIDEOS |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220113&DB=EPODOC&locale=&CC=KR&NR=20220005353A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8gfr4pavxA00Szt8WwT_ZAzGg7N2EfGd3gjbAxEqMBIjP--3YVlCce-tBecmkvud79rr07gEerrVhFyzLl6SzPZK2YGvJEUUyOeWazvF2Yhi76kPmB4Sba60gf1eBjkwsj6oR-i-KIXKNyru-luK-X_0EsIv5Wrp6yN760eHZYh0hrdKxU5kyVSLdDo5CEWMK404ulIP6liWImqr0H-9yRNit9oGm3yktZbhsV5xQOIs5vXp5B7X3RgGO86b3WgCN__eTdgEPxRzNf8cW1Hq7OIcWYpcinzA0JsgM-osiObZYMEEd1KIm7doBYbDuOh1FA2TCMe8gPCe17wQsaesxFftJnXtSnSLBKPULDwQU8OJRhV-ZbHf9JZtyLt8-lXkJ9vpgXV4AU08iMtm5OuD-l6boyqWCLpXH8N-VW0ciuobmL081u8i2cVNMqEtFSm1AvP7-KO26by-xeiPQHZpyJSA |
link.rule.ids | 230,309,783,888,25576,76876 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bT8IwFD5BvOCbosYLahPN3hbDruyBmNF1bu6a0Q3eCBsjMRoggvHv21VQnnjoS09y0p7k9OvXngvAo9GRjLJt6OJkWuSiUk40cSxJOuM802nRKXVN5X3IglBzUuV1qA5r8LHJheF1Qr95cUTmUQXz9xU_rxf_j1gWj61cPuVvbGr-bNOuJazZsVTBmSxYvS6JIyvCAsZdLxHC5FfGi5nI5h7ss0u2XvkDyXpVXspiG1TsEziImb7Z6hRq7_MmNPCm91oTjoL1l3cTDnmMZrFkk2s_XJ5BhjHNUECoE1nIDNmIYzMxadpHjNWhNOmZIaKJadsuRiGhgyjxUBBZxHfDFzRwqYOC1Kdu7BPEVWWuRaL-OTzYhGJHZEsd_Vlm5CXb-5IvoD6bz8pLQJKu5VpH1cfsPqWoqjSuaIuhMP43Yaio5VfQ2qXperf4HhoODfwRW7N3A8eVqHqVaMstqK8-v8pbhtOr_I6b9wcEGow7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=CCTV+METHOD+AND+APPARATUS+FOR+URBAN+TRAFFIC+NETWORK+MODELING+WITH+MULTIPLE+CCTV+VIDEOS&rft.inventor=YEON+HAN+BYUL&rft.inventor=SEO+SEONG+BUM&rft.inventor=JANG+YUN&rft.date=2022-01-13&rft.externalDBID=A&rft.externalDocID=KR20220005353A |