BIT INTERPRETATION FOR CONVOLUTIONAL NEURAL NETWORK INPUT LAYER
In order to efficiently execute deep convolutional neural networks (CNNs) on edge devices (e.g., wearable device such as Apple Watch or FitBit), it is necessary to reduce a bit width of network parameters down to 1-bit. Typically, binarization at a first layer of the CNN is not performed because the...
Saved in:
Main Authors | , , |
---|---|
Format | Patent |
Language | English Korean |
Published |
09.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In order to efficiently execute deep convolutional neural networks (CNNs) on edge devices (e.g., wearable device such as Apple Watch or FitBit), it is necessary to reduce a bit width of network parameters down to 1-bit. Typically, binarization at a first layer of the CNN is not performed because the binarization leads to an increase in an output validation error of input data. Method and systems provided herein include a binary input layer (BIL) which accepts binary input data by learning bit-specific binary weights. By executing the CNN using the binary input data, the method and the system according to the present invention result in a reduction in a consumed chip area and used energy used in contrast to CNN models executed by using floating point input data. A method for implementing a convolutional neural network includes the steps of: receiving input data for the convolutional neural network; filtering the input data by applying a bitwise weight algorithm that learns bit-specific relevance without a predefined ordinal structure provided to generate direct binary input data; and providing the direct binary input data to a convolutional layer within the convolutional neural network.
에지 디바이스들(예컨대, 애플 워치 또는 FitBit와 같은 착용 가능 디바이스) 상에서 심층 컨볼루션 신경망들(CNN)을 효율적으로 실행하기 위해, 1-비트 아래로 네트워크 파라미터들의 비트폭을 감소시키는 것이 필요할 수 있다. CNN의 제 1 층에서의 이진화는 통상적으로 그것이 입력 데이터의 출력 검증 에러에서 증가를 야기할 수 있기 때문에 수행되지 않는다. 제공된 방법 및 시스템들은 비트 특정 이진 가중치들을 학습함으로써 이진 입력 데이터를 수용하는 이진 입력 층(BIL)을 포함한다. 이진 입력 데이터를 사용하여 CNN을 실행함으로써, 본 방법 및 시스템은 부동 소수점 입력 데이터를 사용하여 실행된 CNN 모델들과 대조적으로 소비된 칩 면적 및 사용된 에너지에서의 감소를 야기할 수 있다. |
---|---|
AbstractList | In order to efficiently execute deep convolutional neural networks (CNNs) on edge devices (e.g., wearable device such as Apple Watch or FitBit), it is necessary to reduce a bit width of network parameters down to 1-bit. Typically, binarization at a first layer of the CNN is not performed because the binarization leads to an increase in an output validation error of input data. Method and systems provided herein include a binary input layer (BIL) which accepts binary input data by learning bit-specific binary weights. By executing the CNN using the binary input data, the method and the system according to the present invention result in a reduction in a consumed chip area and used energy used in contrast to CNN models executed by using floating point input data. A method for implementing a convolutional neural network includes the steps of: receiving input data for the convolutional neural network; filtering the input data by applying a bitwise weight algorithm that learns bit-specific relevance without a predefined ordinal structure provided to generate direct binary input data; and providing the direct binary input data to a convolutional layer within the convolutional neural network.
에지 디바이스들(예컨대, 애플 워치 또는 FitBit와 같은 착용 가능 디바이스) 상에서 심층 컨볼루션 신경망들(CNN)을 효율적으로 실행하기 위해, 1-비트 아래로 네트워크 파라미터들의 비트폭을 감소시키는 것이 필요할 수 있다. CNN의 제 1 층에서의 이진화는 통상적으로 그것이 입력 데이터의 출력 검증 에러에서 증가를 야기할 수 있기 때문에 수행되지 않는다. 제공된 방법 및 시스템들은 비트 특정 이진 가중치들을 학습함으로써 이진 입력 데이터를 수용하는 이진 입력 층(BIL)을 포함한다. 이진 입력 데이터를 사용하여 CNN을 실행함으로써, 본 방법 및 시스템은 부동 소수점 입력 데이터를 사용하여 실행된 CNN 모델들과 대조적으로 소비된 칩 면적 및 사용된 에너지에서의 감소를 야기할 수 있다. |
Author | PETERS CHRISTIAN DUERICHEN ROBERT ROCZNIK THOMAS |
Author_xml | – fullname: DUERICHEN ROBERT – fullname: PETERS CHRISTIAN – fullname: ROCZNIK THOMAS |
BookMark | eNrjYmDJy89L5WSwd_IMUfD0C3ENCghyDXEM8fT3U3DzD1Jw9vcL8_cJBfEdfRT8XEODwFRIuH-QN1B9QGiIgo9jpGsQDwNrWmJOcSovlOZmUHZzDXH20E0tyI9PLS5ITE7NSy2J9w4yMjAyMDAwMzMyNHU0Jk4VAIUaLXk |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | 컨볼루션 신경망 입력 층을 위한 비트 해석 |
ExternalDocumentID | KR20200066215A |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_KR20200066215A3 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 14:49:43 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English Korean |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_KR20200066215A3 |
Notes | Application Number: KR20190155396 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200609&DB=EPODOC&CC=KR&NR=20200066215A |
ParticipantIDs | epo_espacenet_KR20200066215A |
PublicationCentury | 2000 |
PublicationDate | 20200609 |
PublicationDateYYYYMMDD | 2020-06-09 |
PublicationDate_xml | – month: 06 year: 2020 text: 20200609 day: 09 |
PublicationDecade | 2020 |
PublicationYear | 2020 |
RelatedCompanies | ROBERT BOSCH GMBH |
RelatedCompanies_xml | – name: ROBERT BOSCH GMBH |
Score | 3.227932 |
Snippet | In order to efficiently execute deep convolutional neural networks (CNNs) on edge devices (e.g., wearable device such as Apple Watch or FitBit), it is... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
Title | BIT INTERPRETATION FOR CONVOLUTIONAL NEURAL NETWORK INPUT LAYER |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200609&DB=EPODOC&locale=&CC=KR&NR=20200066215A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8gfr4pSvxAs0Szt0U6BmYPC4F9BB1spNkQn8i6dYnRAHEz_vteCyhPPDXtNZf2kuvdtXe_AjxkvNkyuc60BJ1bzdDTjsZInms6yQkjKXogbVE7PAo6g9h4mbanFfjc1MJInNAfCY6IGpWivpfyvF7-X2I5MreyeGTvOLToepHlqOvoWMTHTVN1-pY7Dp3QVm3b8qka0BVNoJ2Tdm8P9tGRfhL64E76oi5luW1UvFM4GCO_eXkGlY9FDY7tzd9rNTgarZ-8a3AoczTTAgfXelicQ7f_HCkSzRYlGMlrJgXDOcUOg0k4jFcAt0rgxlQ20WtIfZw_jiNl2Htz6QXce25kDzRc0-xPBDOfbm-gVYfqfDHnl6C0CMk4STqJSZjB0B1jqQC4yQyeJTmSrqCxi9P1bvINnIiuTI0yG1Atv775LRrhkt1J2f0CI8WE3Q |
link.rule.ids | 230,309,783,888,25576,76876 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8gfuCbosYP1CWavS1SGJg9EALbyHBfZOkQn8i6j8RoBpEZ_32vZShPPDW5ay7tJde7a-9-BXhM0mZbS1tMiTC4VdRW3FUYyTKlRTLCSIwRSIf3Drte1wrVl1lnVoHPTS-MwAn9EeCIaFEx2nshzuvl_yWWIWorV0_sHUmL_oj2DLnMjnl-3NRkY9gzJ77h67Ku9-xA9oI1j6Odk85gD_YxyH7m9mBOh7wvZbntVEYncDBBeXlxCpWPRR1q-ubvtTocueWTdx0ORY1mvEJiaYerM-gPx1QSaLaoQSqumSRM5yTd96a-E64BbiXPDAMx0Fc_sHH-JKSSM3gzg3N4GJlUtxRc0_xPBXM72N5A-wKq-SJPL0FqE5KkJOpGGmEqw3CMxRzgJlHTJMqQdQWNXZKud7PvoWZR15k7Y8--gWPOEmVSWgOqxdd3eosOuWB3Qo-_iwGH0A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=BIT+INTERPRETATION+FOR+CONVOLUTIONAL+NEURAL+NETWORK+INPUT+LAYER&rft.inventor=DUERICHEN+ROBERT&rft.inventor=PETERS+CHRISTIAN&rft.inventor=ROCZNIK+THOMAS&rft.date=2020-06-09&rft.externalDBID=A&rft.externalDocID=KR20200066215A |