SOUND SOURCE SEPARATION LEARNING DEVICE, SOUND SOURCE SEPARATION LEARNING METHOD, AND SOUND SOURCE SEPARATION LEARNING PROGRAM

To improve the learning efficiency while preventing the sound source separation accuracy from degrading even in a case of separating a mixed signal in which there are many sound sources mixed in learning of a sound source separation model.SOLUTION: A separation unit 101 separates a mixed signal in w...

Full description

Saved in:
Bibliographic Details
Main Authors RI RI, WATANABE CHIHIRO, KAMEOKA HIROKAZU, SEKI SHOGO
Format Patent
LanguageEnglish
Japanese
Published 30.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To improve the learning efficiency while preventing the sound source separation accuracy from degrading even in a case of separating a mixed signal in which there are many sound sources mixed in learning of a sound source separation model.SOLUTION: A separation unit 101 separates a mixed signal in which a plurality of sound source signals are mixed into a plurality of separation signals by a sound source separation model 111 formed by a neural network. A calculation unit 102 extracts a feature quantity by an extractor 112 from each of the plurality of separation signals and each of the plurality of sound source signals, and calculates an attention matrix having, as an element, similarity between each of the plurality of separation signals and each of the plurality of sound source signals based on the extracted feature quantity. A learning unit 103 learns parameters of the sound source separation model and the extractor so as to minimize a learning standard including an error between each of the plurality of sound source signals and each of the plurality of separation signals associated based on the attention matrix.SELECTED DRAWING: Figure 3 【課題】音源分離モデルの学習において、混合されている音源の数が多い混合信号を分離する場合でも、音源分離精度の低下を抑制しつつ、学習効率を向上させる。【解決手段】分離部101が、複数の音源信号が混合された混合信号を、ニューラルネットワークで構成された音源分離モデル111により複数の分離信号に分離し、算出部102が、複数の分離信号の各々及び複数の音源信号の各々から抽出器112により特徴量を抽出し、抽出した特徴量に基づいて、複数の分離信号の各々と複数の音源信号の各々との類似度を要素に持つ注意行列を算出し、学習部103が、注意行列に基づいて対応付けした複数の音源信号の各々と複数の分離信号の各々との誤差を含む学習規準を最小化するように、音源分離モデル及び抽出器のパラメータを学習する。【選択図】図3
AbstractList To improve the learning efficiency while preventing the sound source separation accuracy from degrading even in a case of separating a mixed signal in which there are many sound sources mixed in learning of a sound source separation model.SOLUTION: A separation unit 101 separates a mixed signal in which a plurality of sound source signals are mixed into a plurality of separation signals by a sound source separation model 111 formed by a neural network. A calculation unit 102 extracts a feature quantity by an extractor 112 from each of the plurality of separation signals and each of the plurality of sound source signals, and calculates an attention matrix having, as an element, similarity between each of the plurality of separation signals and each of the plurality of sound source signals based on the extracted feature quantity. A learning unit 103 learns parameters of the sound source separation model and the extractor so as to minimize a learning standard including an error between each of the plurality of sound source signals and each of the plurality of separation signals associated based on the attention matrix.SELECTED DRAWING: Figure 3 【課題】音源分離モデルの学習において、混合されている音源の数が多い混合信号を分離する場合でも、音源分離精度の低下を抑制しつつ、学習効率を向上させる。【解決手段】分離部101が、複数の音源信号が混合された混合信号を、ニューラルネットワークで構成された音源分離モデル111により複数の分離信号に分離し、算出部102が、複数の分離信号の各々及び複数の音源信号の各々から抽出器112により特徴量を抽出し、抽出した特徴量に基づいて、複数の分離信号の各々と複数の音源信号の各々との類似度を要素に持つ注意行列を算出し、学習部103が、注意行列に基づいて対応付けした複数の音源信号の各々と複数の分離信号の各々との誤差を含む学習規準を最小化するように、音源分離モデル及び抽出器のパラメータを学習する。【選択図】図3
Author RI RI
KAMEOKA HIROKAZU
SEKI SHOGO
WATANABE CHIHIRO
Author_xml – fullname: RI RI
– fullname: WATANABE CHIHIRO
– fullname: KAMEOKA HIROKAZU
– fullname: SEKI SHOGO
BookMark eNrjYmDJy89L5WSoC_YP9XNRAJJBzq4Kwa4BjkGOIZ7-fgo-ro5Bfp5-7gourmGezq46CgQV-rqGePi76Cg4QpThVxwQ5O8e5OjLw8CalphTnMoLpbkZlNxcQ5w9dFML8uNTiwsSk1PzUkvivQKMDIyMDUxMjEyMHY2JUgQAFGg9-w
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
DocumentTitleAlternate 音源分離学習装置、音源分離学習方法、及び音源分離学習プログラム
ExternalDocumentID JP2023044243A
GroupedDBID EVB
ID FETCH-epo_espacenet_JP2023044243A3
IEDL.DBID EVB
IngestDate Fri Oct 25 05:41:39 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_JP2023044243A3
Notes Application Number: JP20210152169
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230330&DB=EPODOC&CC=JP&NR=2023044243A
ParticipantIDs epo_espacenet_JP2023044243A
PublicationCentury 2000
PublicationDate 20230330
PublicationDateYYYYMMDD 2023-03-30
PublicationDate_xml – month: 03
  year: 2023
  text: 20230330
  day: 30
PublicationDecade 2020
PublicationYear 2023
RelatedCompanies NIPPON TELEGR & TELEPH CORP
RelatedCompanies_xml – name: NIPPON TELEGR & TELEPH CORP
Score 3.5901113
Snippet To improve the learning efficiency while preventing the sound source separation accuracy from degrading even in a case of separating a mixed signal in which...
SourceID epo
SourceType Open Access Repository
SubjectTerms ACOUSTICS
CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
MUSICAL INSTRUMENTS
PHYSICS
SPEECH ANALYSIS OR SYNTHESIS
SPEECH OR AUDIO CODING OR DECODING
SPEECH OR VOICE PROCESSING
SPEECH RECOGNITION
Title SOUND SOURCE SEPARATION LEARNING DEVICE, SOUND SOURCE SEPARATION LEARNING METHOD, AND SOUND SOURCE SEPARATION LEARNING PROGRAM
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230330&DB=EPODOC&locale=&CC=JP&NR=2023044243A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDLbGeN6ggIABihDqaRVb263roUJdkr1EH-oe2m3q6wBI3cSKuPHbcbMNdhqXSImtSIn0xXZifwF4jMwGWj1EmpGGNUXXw6ZitlRNiU2UpLFpJOKXCMdt9sb6YNqYluB9UwsjeEK_BDkiIipGvOfivF78XWIxkVu5fIpecWj-3BlZTF5Hx-hPY3wus7bFfY95VKbUGviyG6xkuq7qmr0H--hHGwUc-KRdlKUstm1K5xQOfJwuy8-g9BZKcEw3X69JcOSsX7wlOBQpmvESB9cwXJ7D99Abu4xgG1BOhty3V1dN5IXbgdt3u4TxSZ_yKvlX0eGjnseqxF6p7Vb2A68b2M4FPHT4iPYUXNLsdwNnA39r-dollLN5ll4BieqhkdQKepeoVfCmRWasFgSJTbTpiRbWr6GyY6KbndIKnBQ9Ub5Xu4Vy_vGZ3qH9zqN7se8__PuTBA
link.rule.ids 230,309,783,888,25576,76876
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8JAEJ4gPvCmqFHxsTGmJxoLLZQeiCm7CwXpI6UQbqQtPagJEKnx5m93uoBywsseZiab7G6-ndndmW8BHiOjhl4PkaYnoSJrWliXjUZVlWMDNUls6FPxS4Tt1K2h1hvXxjl439TCCJ7QL0GOiIiKEe-p2K8Xf5dYTORWLp-iVxTNn9tBk0nr0zHG03g-l1iryT2XuVSitNnzJMdf6TStqqnmHuxjjK1ncOCjVlaWstj2Ke0TOPCwu1l6Crm3sAgFuvl6rQhH9vrFuwiHIkUzXqJwDcPlGXwP3KHDCLY-5WTAPXN11UT63PSdrtMhjI-6lJfJv4Y2DyyXlYm5Mttt7Pluxzftc3ho84BaMg5p8juBk563NXz1AvKz-Sy5BBJVQn2qZPQuUSPjTYuMuJoRJNbRp0_VsHIFpR0dXe_U3kPBCuz-pN91XkpwnGlEKZ9yA_n04zO5RV-eRndiDX4AEI2V9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=SOUND+SOURCE+SEPARATION+LEARNING+DEVICE%2C+SOUND+SOURCE+SEPARATION+LEARNING+METHOD%2C+AND+SOUND+SOURCE+SEPARATION+LEARNING+PROGRAM&rft.inventor=RI+RI&rft.inventor=WATANABE+CHIHIRO&rft.inventor=KAMEOKA+HIROKAZU&rft.inventor=SEKI+SHOGO&rft.date=2023-03-30&rft.externalDBID=A&rft.externalDocID=JP2023044243A