OPTICAL AXIS CONTROL DEVICE
To reduce influence by a fluctuation component by squat or the like and a fluctuation component by nose dive in calculation of a road surface inclination angle for static type auto-leveling control, and improve optical axis control accuracy.SOLUTION: An optical axis control device 100 includes: a fi...
Saved in:
Main Authors | , |
---|---|
Format | Patent |
Language | English Japanese |
Published |
10.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To reduce influence by a fluctuation component by squat or the like and a fluctuation component by nose dive in calculation of a road surface inclination angle for static type auto-leveling control, and improve optical axis control accuracy.SOLUTION: An optical axis control device 100 includes: a first inclination angle calculation part 21 for calculating a road surface inclination angle θ1 of a vehicle part inclined in a pitch direction using an acceleration signal output by an acceleration sensor 2 in a vehicle 1; and a travel state determination part 12 for determining whether or not a travel state of the vehicle 1 is in a first travel state and determining whether or not the travel state is in a second travel state. The first travel state includes a uniform travel state, and the second travel state includes an acceleration start state and a deceleration start state. The first inclination angle calculation part 21 calculates a road surface inclination angle θ1 using an acceleration signal in the first travel state (first acceleration signal) and an acceleration signal in the second state (second acceleration signal) when the travel state is changed from the first travel state to the second travel state.SELECTED DRAWING: Figure 1
【課題】スタティック式オートレベリング制御用の対路面傾斜角度の演算において、スクワット等による変動成分及びノーズダイブによる変動成分による影響を低減して、光軸制御精度を向上する。【解決手段】光軸制御装置100は、車両1における加速度センサ2により出力された加速度信号を用いて、ピッチ方向に傾く車体部の対路面傾斜角度θ1を演算する第1傾斜角度演算部21と、車両1の走行状態が第1走行状態であるか否かを判断するとともに、走行状態が第2走行状態であるか否かを判断する走行状態判断部12と、を備え、第1走行状態は、等速走行状態を含み、第2走行状態は、加速開始状態及び減速開始状態を含み、第1傾斜角度演算部21は、走行状態が第1走行状態から第2走行状態に変化したとき、第1走行状態における加速度信号(第1加速度信号)及び第2走行状態における加速度信号(第2加速度信号)を用いて対路面傾斜角度θ1を演算する。【選択図】図1 |
---|---|
AbstractList | To reduce influence by a fluctuation component by squat or the like and a fluctuation component by nose dive in calculation of a road surface inclination angle for static type auto-leveling control, and improve optical axis control accuracy.SOLUTION: An optical axis control device 100 includes: a first inclination angle calculation part 21 for calculating a road surface inclination angle θ1 of a vehicle part inclined in a pitch direction using an acceleration signal output by an acceleration sensor 2 in a vehicle 1; and a travel state determination part 12 for determining whether or not a travel state of the vehicle 1 is in a first travel state and determining whether or not the travel state is in a second travel state. The first travel state includes a uniform travel state, and the second travel state includes an acceleration start state and a deceleration start state. The first inclination angle calculation part 21 calculates a road surface inclination angle θ1 using an acceleration signal in the first travel state (first acceleration signal) and an acceleration signal in the second state (second acceleration signal) when the travel state is changed from the first travel state to the second travel state.SELECTED DRAWING: Figure 1
【課題】スタティック式オートレベリング制御用の対路面傾斜角度の演算において、スクワット等による変動成分及びノーズダイブによる変動成分による影響を低減して、光軸制御精度を向上する。【解決手段】光軸制御装置100は、車両1における加速度センサ2により出力された加速度信号を用いて、ピッチ方向に傾く車体部の対路面傾斜角度θ1を演算する第1傾斜角度演算部21と、車両1の走行状態が第1走行状態であるか否かを判断するとともに、走行状態が第2走行状態であるか否かを判断する走行状態判断部12と、を備え、第1走行状態は、等速走行状態を含み、第2走行状態は、加速開始状態及び減速開始状態を含み、第1傾斜角度演算部21は、走行状態が第1走行状態から第2走行状態に変化したとき、第1走行状態における加速度信号(第1加速度信号)及び第2走行状態における加速度信号(第2加速度信号)を用いて対路面傾斜角度θ1を演算する。【選択図】図1 |
Author | FUKUNAGA TAKAO OSAWA TAKASHI |
Author_xml | – fullname: FUKUNAGA TAKAO – fullname: OSAWA TAKASHI |
BookMark | eNrjYmDJy89L5WSQ9g8I8XR29FFwjPAMVnD29wsJ8vdRcHEN83R25WFgTUvMKU7lhdLcDEpuriHOHrqpBfnxqcUFicmpeakl8V4BRgZGhgYWFsaG5o7GRCkCAGIEIqY |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | 光軸制御装置 |
ExternalDocumentID | JP2021088317A |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_JP2021088317A3 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 13:07:54 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English Japanese |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_JP2021088317A3 |
Notes | Application Number: JP20190220622 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210610&DB=EPODOC&CC=JP&NR=2021088317A |
ParticipantIDs | epo_espacenet_JP2021088317A |
PublicationCentury | 2000 |
PublicationDate | 20210610 |
PublicationDateYYYYMMDD | 2021-06-10 |
PublicationDate_xml | – month: 06 year: 2021 text: 20210610 day: 10 |
PublicationDecade | 2020 |
PublicationYear | 2021 |
RelatedCompanies | MITSUBISHI ELECTRIC CORP |
RelatedCompanies_xml | – name: MITSUBISHI ELECTRIC CORP |
Score | 3.4623744 |
Snippet | To reduce influence by a fluctuation component by squat or the like and a fluctuation component by nose dive in calculation of a road surface inclination angle... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | ARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING ORSUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES INGENERAL GYROSCOPIC INSTRUMENTS MEASURING MEASURING DISTANCES, LEVELS OR BEARINGS NAVIGATION PERFORMING OPERATIONS PHOTOGRAMMETRY OR VIDEOGRAMMETRY PHYSICS SURVEYING TESTING TRANSPORTING VEHICLES IN GENERAL |
Title | OPTICAL AXIS CONTROL DEVICE |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210610&DB=EPODOC&locale=&CC=JP&NR=2021088317A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5qfd40KmpUgkhuwbR5rYcg7SahDTYJNZbcSjYPUEGLifj3nV1b7anH3YHZB3z77czOzALcErOX39uMaQ6SoWYWZYmQsrgTJ8fbvsEpiOcOTyJ79GyGmZV14G2VCyPqhH6L4oiIqALx3orzevHvxPJEbGVzx16w6-MhSF1PXVrHfW7g6Ko3dP0k9mKqUuqGiRpNf2WEIFsOtmAb79EOh4M_G_K0lMU6pwSHsJOguvf2CDqvuQT7dPX1mgR7k-WLtwS7IkSzaLBzCcPmGOQ4SXkdA2WQjZ8UGkfpNH5UPH82pv4J3AR-Skcajjf_W908TNbmZpxCF83-6gwUplusT-qqLuuSx67kRu6UBrGJw3RSFNY5yBsUXWyUynDAWzzkqadfQrf9_KqukFxbdi025QdSCniy |
link.rule.ids | 230,309,783,888,25576,76876 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT4NAEJ7U-qg3RY2KD2IMNyItUPBATLtAWuSVik1vhOWRqIk2gvHvO4tUe-p1J9md3eTbb2Z2Zhbg1lD76f2QUklHMpTULM8RUhoL4qRo7SuMgljtsB8MJ8-qu9AWHXhb1cI0fUK_m-aIiKgM8V439_XyP4hlNbmV1R19waGPByc2LbH1jgfMwZFFa2zaUWiFRCTEdCMxmP3KDAPZcrQF22hj6wwO9nzMylKW65ziHMBOhNO914fQeU056JHV12sc7PntizcHu02KZlbhYAvD6gj4MIpZHwNhtJg-CSQM4lnoCZY9nxL7GG4cOyYTCddL_naXuNGabsoJdNHtL05BoLJGB0ZZlHmZs9yVVEn1XDFQcyobWaadAb9hovON0mvoTWLfS7xp8MjDPpOw9Ke-fAHd-vOruESirelVc0A_Jjd7pQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=OPTICAL+AXIS+CONTROL+DEVICE&rft.inventor=FUKUNAGA+TAKAO&rft.inventor=OSAWA+TAKASHI&rft.date=2021-06-10&rft.externalDBID=A&rft.externalDocID=JP2021088317A |