OBJECT RETRIEVAL SYSTEM, OBJECT RETRIEVAL METHOD AND LEARNED MODEL
To provide a technology capable of specifying a target object even in a situation where there are a plurality of candidates of the target object.SOLUTION: An object retrieval system includes: an instruction statement acquisition unit that acquires an instruction statement relating to a specific obje...
Saved in:
Main Authors | , , |
---|---|
Format | Patent |
Language | English Japanese |
Published |
26.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To provide a technology capable of specifying a target object even in a situation where there are a plurality of candidates of the target object.SOLUTION: An object retrieval system includes: an instruction statement acquisition unit that acquires an instruction statement relating to a specific object; an image extraction unit that extracts one or a plurality of first partial images indicating an individual object included in an input image from the input image associated with the instruction statement; and a learned model that receives an input of the instruction statement, each of the first partial images, and information indicating an intra-image environment of the first partial image to output a probability that each of the first partial images is an object specified by the instruction statement. The learned model is learned by the instruction statement specifying any object included in the image, and the partial image indicating the object specified by the instruction statement.SELECTED DRAWING: Figure 1
【課題】対象となる物体の候補が複数存在するような状況であっても、対象となる物体を特定できる技術を提供する。【解決手段】対象物検索システムは、特定の対象物に関する命令文を取得する命令文取得部と、命令文に関連付けられた入力画像から、当該入力画像に含まれる個々の物体を示す1または複数の第1の部分画像を抽出する画像抽出部と、命令文と、第1の部分画像の各々と、当該第1の部分画像の画像内環境を示す情報との入力を受けて、第1の部分画像の各々が命令文により特定される対象物である確率を出力する学習済モデルとを含む。学習済モデルは、画像に含まれるいずれかの物体を特定する命令文と、当該命令文により特定される物体を示す部分画像とを含むトレーニングデータセットにより学習されている。【選択図】図1 |
---|---|
AbstractList | To provide a technology capable of specifying a target object even in a situation where there are a plurality of candidates of the target object.SOLUTION: An object retrieval system includes: an instruction statement acquisition unit that acquires an instruction statement relating to a specific object; an image extraction unit that extracts one or a plurality of first partial images indicating an individual object included in an input image from the input image associated with the instruction statement; and a learned model that receives an input of the instruction statement, each of the first partial images, and information indicating an intra-image environment of the first partial image to output a probability that each of the first partial images is an object specified by the instruction statement. The learned model is learned by the instruction statement specifying any object included in the image, and the partial image indicating the object specified by the instruction statement.SELECTED DRAWING: Figure 1
【課題】対象となる物体の候補が複数存在するような状況であっても、対象となる物体を特定できる技術を提供する。【解決手段】対象物検索システムは、特定の対象物に関する命令文を取得する命令文取得部と、命令文に関連付けられた入力画像から、当該入力画像に含まれる個々の物体を示す1または複数の第1の部分画像を抽出する画像抽出部と、命令文と、第1の部分画像の各々と、当該第1の部分画像の画像内環境を示す情報との入力を受けて、第1の部分画像の各々が命令文により特定される対象物である確率を出力する学習済モデルとを含む。学習済モデルは、画像に含まれるいずれかの物体を特定する命令文と、当該命令文により特定される物体を示す部分画像とを含むトレーニングデータセットにより学習されている。【選択図】図1 |
Author | MAGASSOUBA ALY KAWAI HISASHI SUGIURA KOMEI |
Author_xml | – fullname: SUGIURA KOMEI – fullname: KAWAI HISASHI – fullname: MAGASSOUBA ALY |
BookMark | eNrjYmDJy89L5WRw8nfycnUOUQhyDQnydA1z9FEIjgwOcfXVUcCQ8HUN8fB3UXD0c1HwcXUM8nN1UfD1d3H14WFgTUvMKU7lhdLcDEpuriHOHrqpBfnxqcUFicmpeakl8V4BRgZGBoaWBpbGBo7GRCkCAF_dLSo |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | 対象物検索システム、対象物検索方法および学習済モデル |
ExternalDocumentID | JP2020190930A |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_JP2020190930A3 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 15:12:00 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English Japanese |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_JP2020190930A3 |
Notes | Application Number: JP20190095922 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201126&DB=EPODOC&CC=JP&NR=2020190930A |
ParticipantIDs | epo_espacenet_JP2020190930A |
PublicationCentury | 2000 |
PublicationDate | 20201126 |
PublicationDateYYYYMMDD | 2020-11-26 |
PublicationDate_xml | – month: 11 year: 2020 text: 20201126 day: 26 |
PublicationDecade | 2020 |
PublicationYear | 2020 |
RelatedCompanies | NATIONAL INSTITUTE OF INFORMATION & COMMUNICATIONS TECHNOLOGY |
RelatedCompanies_xml | – name: NATIONAL INSTITUTE OF INFORMATION & COMMUNICATIONS TECHNOLOGY |
Score | 3.4260137 |
Snippet | To provide a technology capable of specifying a target object even in a situation where there are a plurality of candidates of the target object.SOLUTION: An... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
Title | OBJECT RETRIEVAL SYSTEM, OBJECT RETRIEVAL METHOD AND LEARNED MODEL |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201126&DB=EPODOC&locale=&CC=JP&NR=2020190930A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5qfd60KmpVFpGcLDaPJs2hSJLdEEPzII2lnkoTE1ChLTbi33d2bbUg9LgzMOwOzM43u_MAuJXliVnKPOepMNstrZtrLcTNPBNARXCayYjQ-Y9uEOrek-aPOqMavK9qYUSf0C_RHBEtKkd7r8R9Pf97xKIit3Jxn70iafbgpj0qLaNj7s0UXaJ2j8URjRzJcXp-LIXJD8_E8L1tbcE24miDmwMb2rwsZb7uU9xD2IlR3LQ6gtrbpAH7zmr0WgP2guWPdwN2RYpmvkDi0gwXx2BHYkoJSViaPLKh1SeD50HKgjvyjxGw1IsosUJK-sxKQkZJEFHWP4Ebl6WO18JtjX-VMPbjtSOop1CfzqbFGRC1NIqJkZWGkXe00jRQ86Uu5_mL0kWsp5jn0Nwg6GIjtwkHfMVL7xT9EurVx2dxhT64yq6F7r4BXqWCPw |
link.rule.ids | 230,309,783,888,25576,76876 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5qfdSbVkWtj0UkJ4tNmibNoUia3ZLWvEhjqaeSxARUaIuN-PedXVstCL3OwLA7MDvf7LwAbmU5NnKZ1zxlRqOutlO1jriZVwI0EZwmMiJ0ntF1Pc1-Ugfj1rgE76teGDEn9EsMR0SLStHeC_Fez_8-saiorVzcJ69Imj30og6VltEx92aKJtFuhwU-9S3JsjqDQPLCH56B4XvD3IJtxNg6Nwc26vK2lPm6T-kdwE6A4qbFIZTe4ipUrNXqtSrsucuMdxV2RYlmukDi0gwXR9D1xZYSErIo7LOR6ZDh8zBi7h35x3BZZPuUmB4lDjNDj1Hi-pQ5x3DTY5Fl1_FYk18lTAbB2hWaJ1CezqbZKZBmrmexnuS6nrbU3NBR87kmp-mL0kaspxhnUNsg6Hwj9xoqduQ6E6fvPdZgn3N4G56iXUC5-PjMLtEfF8mV0OM3prWFMg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=OBJECT+RETRIEVAL+SYSTEM%2C+OBJECT+RETRIEVAL+METHOD+AND+LEARNED+MODEL&rft.inventor=SUGIURA+KOMEI&rft.inventor=KAWAI+HISASHI&rft.inventor=MAGASSOUBA+ALY&rft.date=2020-11-26&rft.externalDBID=A&rft.externalDocID=JP2020190930A |