REINFORCEMENT LEARNING METHODS, REINFORCEMENT LEARNING PROGRAMS, AND REINFORCEMENT LEARNING SYSTEMS

To improve the probability of satisfying a constraint condition.SOLUTION: When determining the control input to control target 110, an information processor 100 calculates the risk relevant to the state of the control target 110 at present with respect to the constraint condition for the state of co...

Full description

Saved in:
Bibliographic Details
Main Authors IWANE HIDENAO, OKAWA YOSHIHIRO, SASAKI TOMOTAKE, YANAMI HITOSHI
Format Patent
LanguageEnglish
Japanese
Published 10.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To improve the probability of satisfying a constraint condition.SOLUTION: When determining the control input to control target 110, an information processor 100 calculates the risk relevant to the state of the control target 110 at present with respect to the constraint condition for the state of control target 110 based on a prediction value of the state of control target 110 at a future point of time. The information processor 100 determines the control input to the control target 110 at the present time from the range determined depending on the calculated risk.SELECTED DRAWING: Figure 2 【課題】制約条件を充足する確率の向上を図ること。【解決手段】情報処理装置100は、制御対象110への制御入力を決定するにあたり、将来の時点における制御対象110の状態の予測値に基づいて、制御対象110の状態に関する制約条件に対する、現在の時点における制御対象110の状態についての危険度を算出する。情報処理装置100は、算出した危険度に応じて定まる範囲の中から、現在の時点における制御対象110への制御入力を決定する。【選択図】図2
AbstractList To improve the probability of satisfying a constraint condition.SOLUTION: When determining the control input to control target 110, an information processor 100 calculates the risk relevant to the state of the control target 110 at present with respect to the constraint condition for the state of control target 110 based on a prediction value of the state of control target 110 at a future point of time. The information processor 100 determines the control input to the control target 110 at the present time from the range determined depending on the calculated risk.SELECTED DRAWING: Figure 2 【課題】制約条件を充足する確率の向上を図ること。【解決手段】情報処理装置100は、制御対象110への制御入力を決定するにあたり、将来の時点における制御対象110の状態の予測値に基づいて、制御対象110の状態に関する制約条件に対する、現在の時点における制御対象110の状態についての危険度を算出する。情報処理装置100は、算出した危険度に応じて定まる範囲の中から、現在の時点における制御対象110への制御入力を決定する。【選択図】図2
Author IWANE HIDENAO
YANAMI HITOSHI
SASAKI TOMOTAKE
OKAWA YOSHIHIRO
Author_xml – fullname: IWANE HIDENAO
– fullname: OKAWA YOSHIHIRO
– fullname: SASAKI TOMOTAKE
– fullname: YANAMI HITOSHI
BookMark eNrjYmDJy89L5WRIDnL19HPzD3J29XX1C1HwcXUM8vP0c1fwdQ3x8HcJ1lHAIR8Q5O8e5OgLVODo54JLUXBkcIirbzAPA2taYk5xKi-U5mZQcnMNcfbQTS3Ij08tLkhMTs1LLYn3CjAyMDIwNDExsTBxNCZKEQARNDbb
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
DocumentTitleAlternate 強化学習方法、強化学習プログラム、および強化学習システム
ExternalDocumentID JP2020144484A
GroupedDBID EVB
ID FETCH-epo_espacenet_JP2020144484A3
IEDL.DBID EVB
IngestDate Fri Sep 06 06:22:26 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_JP2020144484A3
Notes Application Number: JP20190039032
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200910&DB=EPODOC&CC=JP&NR=2020144484A
ParticipantIDs epo_espacenet_JP2020144484A
PublicationCentury 2000
PublicationDate 20200910
PublicationDateYYYYMMDD 2020-09-10
PublicationDate_xml – month: 09
  year: 2020
  text: 20200910
  day: 10
PublicationDecade 2020
PublicationYear 2020
RelatedCompanies FUJITSU LTD
RelatedCompanies_xml – name: FUJITSU LTD
Score 3.4120345
Snippet To improve the probability of satisfying a constraint condition.SOLUTION: When determining the control input to control target 110, an information processor...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
CONTROL OR REGULATING SYSTEMS IN GENERAL
CONTROLLING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
FUNCTIONAL ELEMENTS OF SUCH SYSTEMS
MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS
PHYSICS
REGULATING
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
Title REINFORCEMENT LEARNING METHODS, REINFORCEMENT LEARNING PROGRAMS, AND REINFORCEMENT LEARNING SYSTEMS
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200910&DB=EPODOC&locale=&CC=JP&NR=2020144484A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8gfr4palTULMbsiUXqyjYeiIGtfMV9ZJsGn0j3QaImQGTGf99rA8oLPPauubSXXq-_9u4KcE84rqP8kYg6lYlGM9rUEIdMtEzPdSMxzLxhiURh1zP6L3Q4aoxK8LnKhZF1Qn9kcUS0qBTtvZD79fz_EsuRsZWLh-QdSbOnbtxy1CU6Flf9pK46nRYLfMe3VdtuDQPVCyUPsQO1aHsHdvEcbQpzYK8dkZYyX_cp3WPYC1DctDiB0gevwKG9-nqtAgfu8sW7AvsyRDNdIHFphotTSEM28BC-2bIUv_LM2qE38HqKy-K-70Q1ZQM_CP1eiNC9prQ9Z1On6C2KmRudwV2XxXZfw3GP_7Q0HgZrc9TPoTydTfMLUJq8nhkkJ1ynnOoZtdLU4plhJuaEWAbXL6G6RdDVVm4VjkRLxE-Q-jWUi6_v_AaddJHcSuX-AnX5jQo
link.rule.ids 230,309,783,888,25576,76876
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8gfuCbokbFj8WYPbFIXdnGAzGwFQayj2zT4NPSfZCoCRCZ8d-3bUB5gde75tJeer3-rndXgHtE2T7KHxHvU5koOMMtheGQiZKpuaolmp43DV4o7Lia_YKH4-a4BJ-rWhjRJ_RHNEdkFpUyey_EeT3_D2JZIrdy8ZC8M9LsqRe1LXmJjnmoHzVkq9smvmd5pmya7aEvu4HgMeyADdzZgV12x9a5OZDXLi9Lma_7lN4R7PlM3LQ4htIHrULFXH29VoUDZ_niXYV9kaKZLhhxaYaLE0gDMnAZfDNFK35pRDqBO3D7kkMi27PCurSB7wdeP2DQvS51XGvToPAtjIgTnsJdj0SmrbB5x39aiof-2hrVMyhPZ9P8HKQWbWQayhFVMcVqho00NWim6Yk-QYZG1QuobRF0uZV7CxU7ckbxaOA-1-CQc3guBWpcQbn4-s6vmcMukhuh6F9AxY_9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=REINFORCEMENT+LEARNING+METHODS%2C+REINFORCEMENT+LEARNING+PROGRAMS%2C+AND+REINFORCEMENT+LEARNING+SYSTEMS&rft.inventor=IWANE+HIDENAO&rft.inventor=OKAWA+YOSHIHIRO&rft.inventor=SASAKI+TOMOTAKE&rft.inventor=YANAMI+HITOSHI&rft.date=2020-09-10&rft.externalDBID=A&rft.externalDocID=JP2020144484A