NEXT SPEECH CANDIDATE SCORING DEVICE, METHOD, AND PROGRAM

PROBLEM TO BE SOLVED: To smooth interaction between a system and a user by causing the system to repeat a speech suitable for a next speech.SOLUTION: Speech string evaluation data conversion means 21: refers to a concept base 22 with respect to each speech string evaluation data D, with a set of spe...

Full description

Saved in:
Bibliographic Details
Main Authors HIGASHINAKA RYUICHIRO, MAKINO TOSHIAKI, MATSUO YOSHIHIRO, BESSHO KATSUTO
Format Patent
LanguageEnglish
Japanese
Published 19.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:PROBLEM TO BE SOLVED: To smooth interaction between a system and a user by causing the system to repeat a speech suitable for a next speech.SOLUTION: Speech string evaluation data conversion means 21: refers to a concept base 22 with respect to each speech string evaluation data D, with a set of speech string evaluation data D defined as an input, the speech string evaluation D comprising a combination of a speech string A to become a context, a next speech candidate B, and a label C whether or not the next speech candidate B is suited as a next speech of the speech string A; generates a concept vector E of the speech string A; generates a concept vector F of the next speech candidate B; and generates post-conversion speech string evaluation data H comprising a concept vector G formed by combining the concept vector E and the concept vector F, and the label C. Learning means 23 generates a classification model for calculating a score that classifies any concept vector in a same dimension as that of the concept vector G into one value of the label C, from the set of post-conversion speech string evaluation data H.SELECTED DRAWING: Figure 1 【課題】次発話として相応しい発話をシステムが返すことにより、システムとユーザとのインタラクションが円滑になる。【解決手段】発話列評価データ変換手段21が、文脈となる発話列Aと、次発話候補Bと、発話列Aの次発話として次発話候補Bが相応しいか否かのラベルCとの組合せからなる発話列評価データDの集合を入力とし、各発話列評価データDに対し、概念ベース22を参照し、発話列Aの概念ベクトルEを生成し、次発話候補Bの概念ベクトルFを生成し、概念ベクトルEと概念ベクトルFとを結合した概念ベクトルGとラベルCとの組合せからなる変換後発話列評価データHを生成する。学習手段23が、変換後発話列評価データHの集合から、概念ベクトルGと同次元の任意の概念ベクトルが、ラベルCの一つの値に分類されるスコアを算出するための分類モデルを生成する。【選択図】図1
Bibliography:Application Number: JP20140219533