EXISTENCE ANALYSIS METHOD, SYSTEM, AND PROGRAM

PROBLEM TO BE SOLVED: To highly precisely estimate a distribution of departure probabilities.SOLUTION: A data acquisition unit 24 acquires data items of plural customers. A parameter initial value designation unit 26 designates an initial value of a distribution parameter, which represents a distrib...

Full description

Saved in:
Bibliographic Details
Main Authors UCHIYAMA MASASHI, TAKAYA NORIKO, NAGANO SHOICHI, ICHIKAWA YUSUKE
Format Patent
LanguageEnglish
Japanese
Published 19.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract PROBLEM TO BE SOLVED: To highly precisely estimate a distribution of departure probabilities.SOLUTION: A data acquisition unit 24 acquires data items of plural customers. A parameter initial value designation unit 26 designates an initial value of a distribution parameter, which represents a distribution of departure probabilities of a phenomenon and relates to a steady factor x, for each of steady factors x, and designates an initial value of a distribution parameter, which represents a distribution of departure probabilities of a phenomenon and relates to a non-steady factor y, for each of non-steady factors y. A model estimation unit 30 determines a factor, to which a customer belongs, for each of customers, updates the distribution parameters of the steady factors x, updates the distribution parameters of the non-steady factors y, determines the distribution parameter of each of the steady factors x on the basis of the repeatedly updated distribution parameters of the steady factors x, and estimates a parameter that determines the distribution parameters of the non-steady factors y on the basis of the distribution parameters of the non-steady factors y repeatedly updated by non-steady factor distribution parameter updating means. 【課題】精度良く離脱確率の分布を推定することができる。【解決手段】データ取得部24により、複数の顧客のデータを取得し、パラメータ初期値設定部26により、定常要因xの各々について、定常要因xによる現象の離脱確率の分布を表す分布パラメータの初期値を設定すると共に、非定常要因yの各々について、非定常要因yによる現象の離脱確率の分布を表す分布パラメータの初期値を設定し、モデル推定部30により、顧客の各々について所属する要因を決定し、定常要因xの分布パラメータを更新し、非定常要因yの分布パラメータを更新し、繰り返し更新された定常要因x毎の分布パラメータに基づいて、定常要因x毎の分布パラメータを決定し、非定常要因分布パラメータ更新手段により繰り返し更新された非定常要因y毎の分布パラメータに基づいて、非定常要因y毎の分布パラメータを決定するパラメータを推定する。【選択図】図1
AbstractList PROBLEM TO BE SOLVED: To highly precisely estimate a distribution of departure probabilities.SOLUTION: A data acquisition unit 24 acquires data items of plural customers. A parameter initial value designation unit 26 designates an initial value of a distribution parameter, which represents a distribution of departure probabilities of a phenomenon and relates to a steady factor x, for each of steady factors x, and designates an initial value of a distribution parameter, which represents a distribution of departure probabilities of a phenomenon and relates to a non-steady factor y, for each of non-steady factors y. A model estimation unit 30 determines a factor, to which a customer belongs, for each of customers, updates the distribution parameters of the steady factors x, updates the distribution parameters of the non-steady factors y, determines the distribution parameter of each of the steady factors x on the basis of the repeatedly updated distribution parameters of the steady factors x, and estimates a parameter that determines the distribution parameters of the non-steady factors y on the basis of the distribution parameters of the non-steady factors y repeatedly updated by non-steady factor distribution parameter updating means. 【課題】精度良く離脱確率の分布を推定することができる。【解決手段】データ取得部24により、複数の顧客のデータを取得し、パラメータ初期値設定部26により、定常要因xの各々について、定常要因xによる現象の離脱確率の分布を表す分布パラメータの初期値を設定すると共に、非定常要因yの各々について、非定常要因yによる現象の離脱確率の分布を表す分布パラメータの初期値を設定し、モデル推定部30により、顧客の各々について所属する要因を決定し、定常要因xの分布パラメータを更新し、非定常要因yの分布パラメータを更新し、繰り返し更新された定常要因x毎の分布パラメータに基づいて、定常要因x毎の分布パラメータを決定し、非定常要因分布パラメータ更新手段により繰り返し更新された非定常要因y毎の分布パラメータに基づいて、非定常要因y毎の分布パラメータを決定するパラメータを推定する。【選択図】図1
Author NAGANO SHOICHI
ICHIKAWA YUSUKE
TAKAYA NORIKO
UCHIYAMA MASASHI
Author_xml – fullname: UCHIYAMA MASASHI
– fullname: TAKAYA NORIKO
– fullname: NAGANO SHOICHI
– fullname: ICHIKAWA YUSUKE
BookMark eNrjYmDJy89L5WTQc43wDA5x9XN2VXD0c_SJDPYMVvB1DfHwd9FRCI4EyvjqACVcFAKC_N2DHH15GFjTEnOKU3mhNDeDkptriLOHbmpBfnxqcUFicmpeakm8V4CRgaGpgaGhmaWRozFRigAgCifS
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
DocumentTitleAlternate 生存分析方法、装置、及びプログラム
ExternalDocumentID JP2015011692A
GroupedDBID EVB
ID FETCH-epo_espacenet_JP2015011692A3
IEDL.DBID EVB
IngestDate Fri Jul 19 12:47:32 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_JP2015011692A3
Notes Application Number: JP20130139292
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20150119&DB=EPODOC&CC=JP&NR=2015011692A
ParticipantIDs epo_espacenet_JP2015011692A
PublicationCentury 2000
PublicationDate 20150119
PublicationDateYYYYMMDD 2015-01-19
PublicationDate_xml – month: 01
  year: 2015
  text: 20150119
  day: 19
PublicationDecade 2010
PublicationYear 2015
RelatedCompanies NIPPON TELEGR & TELEPH CORP
RelatedCompanies_xml – name: NIPPON TELEGR & TELEPH CORP
Score 3.0819051
Snippet PROBLEM TO BE SOLVED: To highly precisely estimate a distribution of departure probabilities.SOLUTION: A data acquisition unit 24 acquires data items of plural...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
Title EXISTENCE ANALYSIS METHOD, SYSTEM, AND PROGRAM
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20150119&DB=EPODOC&locale=&CC=JP&NR=2015011692A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT4NAEJ7U-rxp1ahVQ4zhVDQUaOFADOUhJVIIoGlPTXcLiZrQRjD-fYcNaE897kwy2Ue-nflmd2cB7nGJ0Y1LVKDIvQSZZKmgqjQVllUxKpqSJWUJN38ycF9lb6pMW_DZvIVhdUJ_WHFERBRFvJdsv17_J7EsdreyeCTvKFo9OYlu8TU7xuhGRARaI90OAyswedPUvZCfRI1uoPWNHdjFOHpYwcF-G1XPUtabPsU5hr0QzeXlCbQ-Fh04NJuv1zpw4Ncn3h3YZ1c0aYHCGobFKTzY03GcVMkhzpgYL7N4HHO-nbiB1ePiGWr8HiosLoyC58jwz-DOsRPTFbAL878Bz71wo7vSObTzVZ5eAEcUTVIpyTCGwA0OiRKyu0xRVHGoyguiiJfQ3WLoaqu2C0dVq8ouiNo1tMuv7_QG_W1Jbtk8_QK4IX2h
link.rule.ids 230,309,783,888,25576,76876
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4gPvCmqFHx0RjTE9VUWmgPjSl9WJA-0lYCJ8IubaImhdga_77TDVVOXPdLNrO7-ea1O7MA93jEaMY7VKAYewkSSRNBUWgiLMpmVDQhC8oSbq7Xdd6k4USe1OCzqoVhfUJ_WHNEZBRFvhdMX6_-k1gme1uZP5J3HFo-27Fm8uvoGL0bERlo9jUr8E3f4A1DGwa8F1ZYV33Sd2AXfexeSQdr3C_LUlabNsU-gr0Ap8uKY6h9zJvQMKqv15pw4K5vvJuwz55o0hwH1zTMT-DBmgyiuEwOcbqnj6bRIOJcK3Z8s81FU0TcNgImF4T-S6i7p3BnW7HhCCjC7G_Bs2GwIW7nDOrZMkvOgSOy2lEoSdGHQAWHgRJGd6ksK2JPkeZEFi-gtWWiy63oLTSc2B3NRgPvtQWHJVJmGkT1CurF13dyjba3IDdsz34Bx9mAlA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=EXISTENCE+ANALYSIS+METHOD%2C+SYSTEM%2C+AND+PROGRAM&rft.inventor=UCHIYAMA+MASASHI&rft.inventor=TAKAYA+NORIKO&rft.inventor=NAGANO+SHOICHI&rft.inventor=ICHIKAWA+YUSUKE&rft.date=2015-01-19&rft.externalDBID=A&rft.externalDocID=JP2015011692A