EXISTENCE ANALYSIS METHOD, SYSTEM, AND PROGRAM
PROBLEM TO BE SOLVED: To highly precisely estimate a distribution of departure probabilities.SOLUTION: A data acquisition unit 24 acquires data items of plural customers. A parameter initial value designation unit 26 designates an initial value of a distribution parameter, which represents a distrib...
Saved in:
Main Authors | , , , |
---|---|
Format | Patent |
Language | English Japanese |
Published |
19.01.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | PROBLEM TO BE SOLVED: To highly precisely estimate a distribution of departure probabilities.SOLUTION: A data acquisition unit 24 acquires data items of plural customers. A parameter initial value designation unit 26 designates an initial value of a distribution parameter, which represents a distribution of departure probabilities of a phenomenon and relates to a steady factor x, for each of steady factors x, and designates an initial value of a distribution parameter, which represents a distribution of departure probabilities of a phenomenon and relates to a non-steady factor y, for each of non-steady factors y. A model estimation unit 30 determines a factor, to which a customer belongs, for each of customers, updates the distribution parameters of the steady factors x, updates the distribution parameters of the non-steady factors y, determines the distribution parameter of each of the steady factors x on the basis of the repeatedly updated distribution parameters of the steady factors x, and estimates a parameter that determines the distribution parameters of the non-steady factors y on the basis of the distribution parameters of the non-steady factors y repeatedly updated by non-steady factor distribution parameter updating means.
【課題】精度良く離脱確率の分布を推定することができる。【解決手段】データ取得部24により、複数の顧客のデータを取得し、パラメータ初期値設定部26により、定常要因xの各々について、定常要因xによる現象の離脱確率の分布を表す分布パラメータの初期値を設定すると共に、非定常要因yの各々について、非定常要因yによる現象の離脱確率の分布を表す分布パラメータの初期値を設定し、モデル推定部30により、顧客の各々について所属する要因を決定し、定常要因xの分布パラメータを更新し、非定常要因yの分布パラメータを更新し、繰り返し更新された定常要因x毎の分布パラメータに基づいて、定常要因x毎の分布パラメータを決定し、非定常要因分布パラメータ更新手段により繰り返し更新された非定常要因y毎の分布パラメータに基づいて、非定常要因y毎の分布パラメータを決定するパラメータを推定する。【選択図】図1 |
---|---|
AbstractList | PROBLEM TO BE SOLVED: To highly precisely estimate a distribution of departure probabilities.SOLUTION: A data acquisition unit 24 acquires data items of plural customers. A parameter initial value designation unit 26 designates an initial value of a distribution parameter, which represents a distribution of departure probabilities of a phenomenon and relates to a steady factor x, for each of steady factors x, and designates an initial value of a distribution parameter, which represents a distribution of departure probabilities of a phenomenon and relates to a non-steady factor y, for each of non-steady factors y. A model estimation unit 30 determines a factor, to which a customer belongs, for each of customers, updates the distribution parameters of the steady factors x, updates the distribution parameters of the non-steady factors y, determines the distribution parameter of each of the steady factors x on the basis of the repeatedly updated distribution parameters of the steady factors x, and estimates a parameter that determines the distribution parameters of the non-steady factors y on the basis of the distribution parameters of the non-steady factors y repeatedly updated by non-steady factor distribution parameter updating means.
【課題】精度良く離脱確率の分布を推定することができる。【解決手段】データ取得部24により、複数の顧客のデータを取得し、パラメータ初期値設定部26により、定常要因xの各々について、定常要因xによる現象の離脱確率の分布を表す分布パラメータの初期値を設定すると共に、非定常要因yの各々について、非定常要因yによる現象の離脱確率の分布を表す分布パラメータの初期値を設定し、モデル推定部30により、顧客の各々について所属する要因を決定し、定常要因xの分布パラメータを更新し、非定常要因yの分布パラメータを更新し、繰り返し更新された定常要因x毎の分布パラメータに基づいて、定常要因x毎の分布パラメータを決定し、非定常要因分布パラメータ更新手段により繰り返し更新された非定常要因y毎の分布パラメータに基づいて、非定常要因y毎の分布パラメータを決定するパラメータを推定する。【選択図】図1 |
Author | NAGANO SHOICHI ICHIKAWA YUSUKE TAKAYA NORIKO UCHIYAMA MASASHI |
Author_xml | – fullname: UCHIYAMA MASASHI – fullname: TAKAYA NORIKO – fullname: NAGANO SHOICHI – fullname: ICHIKAWA YUSUKE |
BookMark | eNrjYmDJy89L5WTQc43wDA5x9XN2VXD0c_SJDPYMVvB1DfHwd9FRCI4EyvjqACVcFAKC_N2DHH15GFjTEnOKU3mhNDeDkptriLOHbmpBfnxqcUFicmpeakm8V4CRgaGpgaGhmaWRozFRigAgCifS |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | 生存分析方法、装置、及びプログラム |
ExternalDocumentID | JP2015011692A |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_JP2015011692A3 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 12:47:32 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English Japanese |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_JP2015011692A3 |
Notes | Application Number: JP20130139292 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20150119&DB=EPODOC&CC=JP&NR=2015011692A |
ParticipantIDs | epo_espacenet_JP2015011692A |
PublicationCentury | 2000 |
PublicationDate | 20150119 |
PublicationDateYYYYMMDD | 2015-01-19 |
PublicationDate_xml | – month: 01 year: 2015 text: 20150119 day: 19 |
PublicationDecade | 2010 |
PublicationYear | 2015 |
RelatedCompanies | NIPPON TELEGR & TELEPH CORP |
RelatedCompanies_xml | – name: NIPPON TELEGR & TELEPH CORP |
Score | 3.0819051 |
Snippet | PROBLEM TO BE SOLVED: To highly precisely estimate a distribution of departure probabilities.SOLUTION: A data acquisition unit 24 acquires data items of plural... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
Title | EXISTENCE ANALYSIS METHOD, SYSTEM, AND PROGRAM |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20150119&DB=EPODOC&locale=&CC=JP&NR=2015011692A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT4NAEJ7U-rxp1ahVQ4zhVDQUaOFADOUhJVIIoGlPTXcLiZrQRjD-fYcNaE897kwy2Ue-nflmd2cB7nGJ0Y1LVKDIvQSZZKmgqjQVllUxKpqSJWUJN38ycF9lb6pMW_DZvIVhdUJ_WHFERBRFvJdsv17_J7EsdreyeCTvKFo9OYlu8TU7xuhGRARaI90OAyswedPUvZCfRI1uoPWNHdjFOHpYwcF-G1XPUtabPsU5hr0QzeXlCbQ-Fh04NJuv1zpw4Ncn3h3YZ1c0aYHCGobFKTzY03GcVMkhzpgYL7N4HHO-nbiB1ePiGWr8HiosLoyC58jwz-DOsRPTFbAL878Bz71wo7vSObTzVZ5eAEcUTVIpyTCGwA0OiRKyu0xRVHGoyguiiJfQ3WLoaqu2C0dVq8ouiNo1tMuv7_QG_W1Jbtk8_QK4IX2h |
link.rule.ids | 230,309,783,888,25576,76876 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4gPvCmqFHx0RjTE9VUWmgPjSl9WJA-0lYCJ8IubaImhdga_77TDVVOXPdLNrO7-ea1O7MA93jEaMY7VKAYewkSSRNBUWgiLMpmVDQhC8oSbq7Xdd6k4USe1OCzqoVhfUJ_WHNEZBRFvhdMX6_-k1gme1uZP5J3HFo-27Fm8uvoGL0bERlo9jUr8E3f4A1DGwa8F1ZYV33Sd2AXfexeSQdr3C_LUlabNsU-gr0Ap8uKY6h9zJvQMKqv15pw4K5vvJuwz55o0hwH1zTMT-DBmgyiuEwOcbqnj6bRIOJcK3Z8s81FU0TcNgImF4T-S6i7p3BnW7HhCCjC7G_Bs2GwIW7nDOrZMkvOgSOy2lEoSdGHQAWHgRJGd6ksK2JPkeZEFi-gtWWiy63oLTSc2B3NRgPvtQWHJVJmGkT1CurF13dyjba3IDdsz34Bx9mAlA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=EXISTENCE+ANALYSIS+METHOD%2C+SYSTEM%2C+AND+PROGRAM&rft.inventor=UCHIYAMA+MASASHI&rft.inventor=TAKAYA+NORIKO&rft.inventor=NAGANO+SHOICHI&rft.inventor=ICHIKAWA+YUSUKE&rft.date=2015-01-19&rft.externalDBID=A&rft.externalDocID=JP2015011692A |