Natural language processing using an ontology-based concept embedding model

A method 300, system, or program for a computer system to perform natural language processing (NLP) by generating a vector space model based on an ontology of concepts 310: training examples are extracted for concepts of a hierarchical ontology (200, fig.2A), wherein the training examples are based...

Full description

Saved in:
Bibliographic Details
Main Authors Brendan Bull, Paul Lewis Felt, Andrew Hicks
Format Patent
LanguageEnglish
Published 13.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A method 300, system, or program for a computer system to perform natural language processing (NLP) by generating a vector space model based on an ontology of concepts 310: training examples are extracted for concepts of a hierarchical ontology (200, fig.2A), wherein the training examples are based on neighbouring concepts 330; a plurality of vectors, each including one or more features, are initialized 340 and each vector corresponds to a concept, then a vector space model is generated by iteratively modifying the concept vectors to optimize a loss function 350; finally, natural language processing 360 is performed using the vector space model. Concepts can be assessed using cosine similarity between a concept vector and a mean vector of at least one of each of a parent concept and child concept. The vector space model may be a continuous bag of words model. The iterative optimisation can use both positive and negative training examples in order to optimise the loss function. The adjustment of vectors may also use a gradient descent algorithm.
AbstractList A method 300, system, or program for a computer system to perform natural language processing (NLP) by generating a vector space model based on an ontology of concepts 310: training examples are extracted for concepts of a hierarchical ontology (200, fig.2A), wherein the training examples are based on neighbouring concepts 330; a plurality of vectors, each including one or more features, are initialized 340 and each vector corresponds to a concept, then a vector space model is generated by iteratively modifying the concept vectors to optimize a loss function 350; finally, natural language processing 360 is performed using the vector space model. Concepts can be assessed using cosine similarity between a concept vector and a mean vector of at least one of each of a parent concept and child concept. The vector space model may be a continuous bag of words model. The iterative optimisation can use both positive and negative training examples in order to optimise the loss function. The adjustment of vectors may also use a gradient descent algorithm.
Author Brendan Bull
Paul Lewis Felt
Andrew Hicks
Author_xml – fullname: Brendan Bull
– fullname: Paul Lewis Felt
– fullname: Andrew Hicks
BookMark eNqFyjsOwjAQRVEXUPBbA7OBFARID4iPhERFH03sh4XkzFixXbB7BKKnubc5UzMSFUzM9ca5DBwosPjCHhQHtUjpKZ7KtyykkjWof1UdJziyKhYxE_oOzn1Mrw5hbsYPDgmL32dmeTreD5cKUVukyBaC3J73dbNqtpt6t_4v3tprNqA
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
ExternalDocumentID GB2616542A
GroupedDBID EVB
ID FETCH-epo_espacenet_GB2616542A3
IEDL.DBID EVB
IngestDate Fri Jul 19 13:14:31 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_GB2616542A3
Notes Application Number: GB202308265
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230913&DB=EPODOC&CC=GB&NR=2616542A
ParticipantIDs epo_espacenet_GB2616542A
PublicationCentury 2000
PublicationDate 20230913
PublicationDateYYYYMMDD 2023-09-13
PublicationDate_xml – month: 09
  year: 2023
  text: 20230913
  day: 13
PublicationDecade 2020
PublicationYear 2023
RelatedCompanies Merative US L.P
RelatedCompanies_xml – name: Merative US L.P
Score 3.4862258
Snippet A method 300, system, or program for a computer system to perform natural language processing (NLP) by generating a vector space model based on an ontology of...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
Title Natural language processing using an ontology-based concept embedding model
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230913&DB=EPODOC&locale=&CC=GB&NR=2616542A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LT8MwDLbGeN6ggMY7B9RbxUq7rj1UiD62CbRuQgPtNuVVwYGuYp34-zjZClx2ySGRrMSS8znOZxvgtk0RR5hgaOK5tFzuUIt1PGH5vofObde2qVA_usPMG7y6T9POtAHvdS6MrhP6rYsjokVxtPdK39flXxAr0dzKxR37wKn5Q28SJub6dYz-dGA7ZhKF6XiUjGIzjsN-ZGYvIT4UVGumxy3YRie6q8hf6VukclLK_4DSO4SdMcoqqiNoyMKA_bjuu2bA3nD93W3AruZn8gVOrm1wcQzPGdW1MkgdaiTliuyPIESWeqQFUWUJVMDcUjAlCF9lJxL5yaRQcEV0C5wTuOmlk3hg4f5mv6qY9aP6IM4pNIt5IVtAPC46ricCl_K2a_seQydL8m5A7_Mg50KeQWuTlPPNSxdwoBSquBG2cwnN6msprxCAK3atdfcDIV2MJg
link.rule.ids 230,309,783,888,25578,76884
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LT8JAEJ4gPvCmqMEnezC9NVJbSntojG15KFCIQcON7KvRg4VIiX_f2YWqFy572E0mu5PMfrOzM98A3DYo4ggTDE08labDbWqypitMz3PRuW1ZFhXqR3eYuL1X53nanJbgvaiF0Tyh35ocES2Ko73n-r5e_AWxYp1bubxjHzg1f-hMgtjYvI7Rn_Yt24jDoD0exaPIiKKgGxrJS4APBdWa6XEHdnEPnmLZb7-FqiZl8R9QOkewN0ZZWX4MJZlVoRIVfdeqcDDcfHdXYV_nZ_IlTm5scHkC_YRqrgxShBrJYp3sjyBEVnqkGVG0BCpgbiqYEoSvqxOJ_GRSKLgiugXOKdQ77UnUM3F_s19VzLphcRD7DMrZPJM1IC4XTccVvkN5w7E8l6GTJXnLp_epn3Ihz6G2TcrF9qU6VHqT4WA2eEr6l3ColKvyJCz7Csr510peIxjn7Ebr8QfcDY8W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Natural+language+processing+using+an+ontology-based+concept+embedding+model&rft.inventor=Brendan+Bull&rft.inventor=Paul+Lewis+Felt&rft.inventor=Andrew+Hicks&rft.date=2023-09-13&rft.externalDBID=A&rft.externalDocID=GB2616542A