Natural language processing using an ontology-based concept embedding model
A method 300, system, or program for a computer system to perform natural language processing (NLP) by generating a vector space model based on an ontology of concepts 310: training examples are extracted for concepts of a hierarchical ontology (200, fig.2A), wherein the training examples are based...
Saved in:
Main Authors | , , |
---|---|
Format | Patent |
Language | English |
Published |
13.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A method 300, system, or program for a computer system to perform natural language processing (NLP) by generating a vector space model based on an ontology of concepts 310: training examples are extracted for concepts of a hierarchical ontology (200, fig.2A), wherein the training examples are based on neighbouring concepts 330; a plurality of vectors, each including one or more features, are initialized 340 and each vector corresponds to a concept, then a vector space model is generated by iteratively modifying the concept vectors to optimize a loss function 350; finally, natural language processing 360 is performed using the vector space model. Concepts can be assessed using cosine similarity between a concept vector and a mean vector of at least one of each of a parent concept and child concept. The vector space model may be a continuous bag of words model. The iterative optimisation can use both positive and negative training examples in order to optimise the loss function. The adjustment of vectors may also use a gradient descent algorithm. |
---|---|
AbstractList | A method 300, system, or program for a computer system to perform natural language processing (NLP) by generating a vector space model based on an ontology of concepts 310: training examples are extracted for concepts of a hierarchical ontology (200, fig.2A), wherein the training examples are based on neighbouring concepts 330; a plurality of vectors, each including one or more features, are initialized 340 and each vector corresponds to a concept, then a vector space model is generated by iteratively modifying the concept vectors to optimize a loss function 350; finally, natural language processing 360 is performed using the vector space model. Concepts can be assessed using cosine similarity between a concept vector and a mean vector of at least one of each of a parent concept and child concept. The vector space model may be a continuous bag of words model. The iterative optimisation can use both positive and negative training examples in order to optimise the loss function. The adjustment of vectors may also use a gradient descent algorithm. |
Author | Brendan Bull Paul Lewis Felt Andrew Hicks |
Author_xml | – fullname: Brendan Bull – fullname: Paul Lewis Felt – fullname: Andrew Hicks |
BookMark | eNqFyjsOwjAQRVEXUPBbA7OBFARID4iPhERFH03sh4XkzFixXbB7BKKnubc5UzMSFUzM9ca5DBwosPjCHhQHtUjpKZ7KtyykkjWof1UdJziyKhYxE_oOzn1Mrw5hbsYPDgmL32dmeTreD5cKUVukyBaC3J73dbNqtpt6t_4v3tprNqA |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
ExternalDocumentID | GB2616542A |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_GB2616542A3 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 13:14:31 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_GB2616542A3 |
Notes | Application Number: GB202308265 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230913&DB=EPODOC&CC=GB&NR=2616542A |
ParticipantIDs | epo_espacenet_GB2616542A |
PublicationCentury | 2000 |
PublicationDate | 20230913 |
PublicationDateYYYYMMDD | 2023-09-13 |
PublicationDate_xml | – month: 09 year: 2023 text: 20230913 day: 13 |
PublicationDecade | 2020 |
PublicationYear | 2023 |
RelatedCompanies | Merative US L.P |
RelatedCompanies_xml | – name: Merative US L.P |
Score | 3.4862258 |
Snippet | A method 300, system, or program for a computer system to perform natural language processing (NLP) by generating a vector space model based on an ontology of... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
Title | Natural language processing using an ontology-based concept embedding model |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230913&DB=EPODOC&locale=&CC=GB&NR=2616542A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LT8MwDLbGeN6ggMY7B9RbxUq7rj1UiD62CbRuQgPtNuVVwYGuYp34-zjZClx2ySGRrMSS8znOZxvgtk0RR5hgaOK5tFzuUIt1PGH5vofObde2qVA_usPMG7y6T9POtAHvdS6MrhP6rYsjokVxtPdK39flXxAr0dzKxR37wKn5Q28SJub6dYz-dGA7ZhKF6XiUjGIzjsN-ZGYvIT4UVGumxy3YRie6q8hf6VukclLK_4DSO4SdMcoqqiNoyMKA_bjuu2bA3nD93W3AruZn8gVOrm1wcQzPGdW1MkgdaiTliuyPIESWeqQFUWUJVMDcUjAlCF9lJxL5yaRQcEV0C5wTuOmlk3hg4f5mv6qY9aP6IM4pNIt5IVtAPC46ricCl_K2a_seQydL8m5A7_Mg50KeQWuTlPPNSxdwoBSquBG2cwnN6msprxCAK3atdfcDIV2MJg |
link.rule.ids | 230,309,783,888,25578,76884 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LT8JAEJ4gPvCmqMEnezC9NVJbSntojG15KFCIQcON7KvRg4VIiX_f2YWqFy572E0mu5PMfrOzM98A3DYo4ggTDE08labDbWqypitMz3PRuW1ZFhXqR3eYuL1X53nanJbgvaiF0Tyh35ocES2Ko73n-r5e_AWxYp1bubxjHzg1f-hMgtjYvI7Rn_Yt24jDoD0exaPIiKKgGxrJS4APBdWa6XEHdnEPnmLZb7-FqiZl8R9QOkewN0ZZWX4MJZlVoRIVfdeqcDDcfHdXYV_nZ_IlTm5scHkC_YRqrgxShBrJYp3sjyBEVnqkGVG0BCpgbiqYEoSvqxOJ_GRSKLgiugXOKdQ77UnUM3F_s19VzLphcRD7DMrZPJM1IC4XTccVvkN5w7E8l6GTJXnLp_epn3Ihz6G2TcrF9qU6VHqT4WA2eEr6l3ColKvyJCz7Csr510peIxjn7Ebr8QfcDY8W |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Natural+language+processing+using+an+ontology-based+concept+embedding+model&rft.inventor=Brendan+Bull&rft.inventor=Paul+Lewis+Felt&rft.inventor=Andrew+Hicks&rft.date=2023-09-13&rft.externalDBID=A&rft.externalDocID=GB2616542A |