Additive manufacture of electrically conductive materials

Additive layer manufacturing method comprising: depositing a layer of absorptive material 114 onto a workpiece; depositing a layer of additive manufacturing stock powder 108 onto the workpiece; and fusing the stock powder to the workpiece using a focused energy source 104 at a wavelength where the a...

Full description

Saved in:
Bibliographic Details
Main Authors Tahany Ibrahim El-Wardany, Wayde R Schmidt, Vijay Jagdale
Format Patent
LanguageEnglish
Published 13.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Additive layer manufacturing method comprising: depositing a layer of absorptive material 114 onto a workpiece; depositing a layer of additive manufacturing stock powder 108 onto the workpiece; and fusing the stock powder to the workpiece using a focused energy source 104 at a wavelength where the absorptive material has a higher absorptivity than the stock powder. Most preferably, absorptive layer is added before or after stock layer so absorptive/stock layer is coated by stock/absorptive material. Preferably, successive layers of absorptive and stock material form component 106. Preferably, component comprises conductive material, such as 99.9% pure copper, aluminium or noble metals. Preferably, the energy source is a 1064nm laser. Preferably, the stock layer is 10-200µm and the absorptive layer less than 9µm. Preferably, the workpiece is oxidised to remove the absorptive layer, and reduced to remove oxide layer from oxidisation. Preferably, the absorptive material is graphite, carbon black or graphene. Preferably, the layer thickness is controlled by recoater blade or sprayer.
Bibliography:Application Number: GB20200001697