ADVERSARIAL SAMPLE PROTECTION FOR MACHINE LEARNING

Adversarial sample protection for machine learning is described. An example of a storage medium includes instructions for initiating processing of examples for training of an inference engine in a system; dynamically selecting a subset of defensive preprocessing methods from a repository of defensiv...

Full description

Saved in:
Bibliographic Details
Main Authors KELLERMANN, Raizy, NAYSHTUT, Alex, LEVY, Dor, BEN-SHALOM, Omer
Format Patent
LanguageEnglish
French
German
Published 28.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Adversarial sample protection for machine learning is described. An example of a storage medium includes instructions for initiating processing of examples for training of an inference engine in a system; dynamically selecting a subset of defensive preprocessing methods from a repository of defensive preprocessing methods for a current iteration of processing, wherein a subset of defensive preprocessing methods is selected for each iteration of processing; performing training of the inference engine with a plurality of examples, wherein the training of the inference engine include operation of the selected subset of defensive preprocessing methods; and performing an inference operation with the inference engine, including utilizing the selected subset of preprocessing defenses for the current iteration of processing.
AbstractList Adversarial sample protection for machine learning is described. An example of a storage medium includes instructions for initiating processing of examples for training of an inference engine in a system; dynamically selecting a subset of defensive preprocessing methods from a repository of defensive preprocessing methods for a current iteration of processing, wherein a subset of defensive preprocessing methods is selected for each iteration of processing; performing training of the inference engine with a plurality of examples, wherein the training of the inference engine include operation of the selected subset of defensive preprocessing methods; and performing an inference operation with the inference engine, including utilizing the selected subset of preprocessing defenses for the current iteration of processing.
Author KELLERMANN, Raizy
LEVY, Dor
BEN-SHALOM, Omer
NAYSHTUT, Alex
Author_xml – fullname: KELLERMANN, Raizy
– fullname: NAYSHTUT, Alex
– fullname: LEVY, Dor
– fullname: BEN-SHALOM, Omer
BookMark eNrjYmDJy89L5WQwcnQJcw0KdgzydPRRCHb0DfBxVQgI8g9xdQ7x9PdTcPMPUvB1dPbw9HNV8HF1DPLz9HPnYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxrgEmRgZG5hZmjobGRCgBAC4OKDw
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
DocumentTitleAlternate GEGNERISCHER PROBENSCHUTZ FÜR MASCHINELLES LERNEN
PROTECTION D'ÉCHANTILLON CONTRADICTOIRE POUR APPRENTISSAGE AUTOMATIQUE
ExternalDocumentID EP4202786A1
GroupedDBID EVB
ID FETCH-epo_espacenet_EP4202786A13
IEDL.DBID EVB
IngestDate Fri Jul 19 13:59:10 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
French
German
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_EP4202786A13
Notes Application Number: EP20220201179
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230628&DB=EPODOC&CC=EP&NR=4202786A1
ParticipantIDs epo_espacenet_EP4202786A1
PublicationCentury 2000
PublicationDate 20230628
PublicationDateYYYYMMDD 2023-06-28
PublicationDate_xml – month: 06
  year: 2023
  text: 20230628
  day: 28
PublicationDecade 2020
PublicationYear 2023
RelatedCompanies INTEL Corporation
RelatedCompanies_xml – name: INTEL Corporation
Score 3.4709442
Snippet Adversarial sample protection for machine learning is described. An example of a storage medium includes instructions for initiating processing of examples for...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
Title ADVERSARIAL SAMPLE PROTECTION FOR MACHINE LEARNING
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230628&DB=EPODOC&locale=&CC=EP&NR=4202786A1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La8MwDBale962bGPdCx9GbmHNo0l6KCNN3DWjSUOajd5KYrvQS1qWjP39KabtdtluRgYjC2Tpsz_JAI98qZs9njMNg4_QrNy2tEI3uZY7DuuarHAN3hQ4R7E9frNe5715C1a7WhjZJ_RLNkdEj2Lo77U8rzc_l1iB5FZWT8UKRevnUTYI1C06bvJpw1WD4YAm02Dqq76PIzVOB1YD8l3bQ6B0gFm0IzHb-7ApStn8jiijMzhMcLGyPoeWKBU48XcfrylwHG3fuxU4kgRNVqFw64TVBRgYSmg689LQm5CZFyUTSpJ0mlHJByEI60jk-eMwpmRCvTQO45dLICOa-WMN1Vjst7ygyV5h8wra5boU10B6_Zw7jrC5MHVLdHmOpmQmw8yzb_C-5Xag8-cyN__M3cJpY7uGAWW4d9CuPz7FPcbauniQVvoGCrl-oA
link.rule.ids 230,309,783,888,25577,76883
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT4MwEL8s82O-6dQ4P_tgeCNuwIA9LIZBJygwwtDsbYG2Jnthi8P473s02_RF35pr0lwvud792t9dAe75e0_v85ypGHyEauSmoRY9nau5ZbGuzgpb43WBcxSb_qvxPOvPGrDY1sLIPqFfsjkiehRDf6_keb36ucTyJLdy_VAsULR8HGdDT9mg4zqf1mzFGw1pMvEmruK6OFLidGjUIN82HQRKe5hh2xIpvY3qopTV74gyPob9BBcrqxNoiLINLXf78VobDqPNe3cbDiRBk61RuHHC9SloGEpoOnXSwAnJ1ImSkJIknWRU8kEIwjoSOa4fxJSE1EnjIH46AzKmmeurqMZ8t-U5TXYK6-fQLJeluADSH-TcsoTJhd4zRJfnaEqmM8w8BxofGHYHOn8uc_nP3B20_CwK52EQv1zBUW3Hmg2l2dfQrD4-xQ3G3aq4lRb7BiJ5gZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=ADVERSARIAL+SAMPLE+PROTECTION+FOR+MACHINE+LEARNING&rft.inventor=KELLERMANN%2C+Raizy&rft.inventor=NAYSHTUT%2C+Alex&rft.inventor=LEVY%2C+Dor&rft.inventor=BEN-SHALOM%2C+Omer&rft.date=2023-06-28&rft.externalDBID=A1&rft.externalDocID=EP4202786A1