ADVERSARIAL SAMPLE PROTECTION FOR MACHINE LEARNING
Adversarial sample protection for machine learning is described. An example of a storage medium includes instructions for initiating processing of examples for training of an inference engine in a system; dynamically selecting a subset of defensive preprocessing methods from a repository of defensiv...
Saved in:
Main Authors | , , , |
---|---|
Format | Patent |
Language | English French German |
Published |
28.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Adversarial sample protection for machine learning is described. An example of a storage medium includes instructions for initiating processing of examples for training of an inference engine in a system; dynamically selecting a subset of defensive preprocessing methods from a repository of defensive preprocessing methods for a current iteration of processing, wherein a subset of defensive preprocessing methods is selected for each iteration of processing; performing training of the inference engine with a plurality of examples, wherein the training of the inference engine include operation of the selected subset of defensive preprocessing methods; and performing an inference operation with the inference engine, including utilizing the selected subset of preprocessing defenses for the current iteration of processing. |
---|---|
AbstractList | Adversarial sample protection for machine learning is described. An example of a storage medium includes instructions for initiating processing of examples for training of an inference engine in a system; dynamically selecting a subset of defensive preprocessing methods from a repository of defensive preprocessing methods for a current iteration of processing, wherein a subset of defensive preprocessing methods is selected for each iteration of processing; performing training of the inference engine with a plurality of examples, wherein the training of the inference engine include operation of the selected subset of defensive preprocessing methods; and performing an inference operation with the inference engine, including utilizing the selected subset of preprocessing defenses for the current iteration of processing. |
Author | KELLERMANN, Raizy LEVY, Dor BEN-SHALOM, Omer NAYSHTUT, Alex |
Author_xml | – fullname: KELLERMANN, Raizy – fullname: NAYSHTUT, Alex – fullname: LEVY, Dor – fullname: BEN-SHALOM, Omer |
BookMark | eNrjYmDJy89L5WQwcnQJcw0KdgzydPRRCHb0DfBxVQgI8g9xdQ7x9PdTcPMPUvB1dPbw9HNV8HF1DPLz9HPnYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxrgEmRgZG5hZmjobGRCgBAC4OKDw |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | GEGNERISCHER PROBENSCHUTZ FÜR MASCHINELLES LERNEN PROTECTION D'ÉCHANTILLON CONTRADICTOIRE POUR APPRENTISSAGE AUTOMATIQUE |
ExternalDocumentID | EP4202786A1 |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_EP4202786A13 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 13:59:10 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English French German |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_EP4202786A13 |
Notes | Application Number: EP20220201179 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230628&DB=EPODOC&CC=EP&NR=4202786A1 |
ParticipantIDs | epo_espacenet_EP4202786A1 |
PublicationCentury | 2000 |
PublicationDate | 20230628 |
PublicationDateYYYYMMDD | 2023-06-28 |
PublicationDate_xml | – month: 06 year: 2023 text: 20230628 day: 28 |
PublicationDecade | 2020 |
PublicationYear | 2023 |
RelatedCompanies | INTEL Corporation |
RelatedCompanies_xml | – name: INTEL Corporation |
Score | 3.4709442 |
Snippet | Adversarial sample protection for machine learning is described. An example of a storage medium includes instructions for initiating processing of examples for... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
Title | ADVERSARIAL SAMPLE PROTECTION FOR MACHINE LEARNING |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230628&DB=EPODOC&locale=&CC=EP&NR=4202786A1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La8MwDBale962bGPdCx9GbmHNo0l6KCNN3DWjSUOajd5KYrvQS1qWjP39KabtdtluRgYjC2Tpsz_JAI98qZs9njMNg4_QrNy2tEI3uZY7DuuarHAN3hQ4R7E9frNe5715C1a7WhjZJ_RLNkdEj2Lo77U8rzc_l1iB5FZWT8UKRevnUTYI1C06bvJpw1WD4YAm02Dqq76PIzVOB1YD8l3bQ6B0gFm0IzHb-7ApStn8jiijMzhMcLGyPoeWKBU48XcfrylwHG3fuxU4kgRNVqFw64TVBRgYSmg689LQm5CZFyUTSpJ0mlHJByEI60jk-eMwpmRCvTQO45dLICOa-WMN1Vjst7ygyV5h8wra5boU10B6_Zw7jrC5MHVLdHmOpmQmw8yzb_C-5Xag8-cyN__M3cJpY7uGAWW4d9CuPz7FPcbauniQVvoGCrl-oA |
link.rule.ids | 230,309,783,888,25577,76883 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT4MwEL8s82O-6dQ4P_tgeCNuwIA9LIZBJygwwtDsbYG2Jnthi8P473s02_RF35pr0lwvud792t9dAe75e0_v85ypGHyEauSmoRY9nau5ZbGuzgpb43WBcxSb_qvxPOvPGrDY1sLIPqFfsjkiehRDf6_keb36ucTyJLdy_VAsULR8HGdDT9mg4zqf1mzFGw1pMvEmruK6OFLidGjUIN82HQRKe5hh2xIpvY3qopTV74gyPob9BBcrqxNoiLINLXf78VobDqPNe3cbDiRBk61RuHHC9SloGEpoOnXSwAnJ1ImSkJIknWRU8kEIwjoSOa4fxJSE1EnjIH46AzKmmeurqMZ8t-U5TXYK6-fQLJeluADSH-TcsoTJhd4zRJfnaEqmM8w8BxofGHYHOn8uc_nP3B20_CwK52EQv1zBUW3Hmg2l2dfQrD4-xQ3G3aq4lRb7BiJ5gZA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=ADVERSARIAL+SAMPLE+PROTECTION+FOR+MACHINE+LEARNING&rft.inventor=KELLERMANN%2C+Raizy&rft.inventor=NAYSHTUT%2C+Alex&rft.inventor=LEVY%2C+Dor&rft.inventor=BEN-SHALOM%2C+Omer&rft.date=2023-06-28&rft.externalDBID=A1&rft.externalDocID=EP4202786A1 |