MACHINE LEARNING POWERED ANOMALY DETECTION FOR MAINTENANCE WORK ORDERS
An industrial work order analysis system applies statistical and machine learning analytics to both open and closed work orders to identify problems and abnormalities that could impact manufacturing and maintenance operations. The analysis system applies algorithms to learn normal maintenance behavi...
Saved in:
Main Authors | , , , , , , , |
---|---|
Format | Patent |
Language | English French German |
Published |
25.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An industrial work order analysis system applies statistical and machine learning analytics to both open and closed work orders to identify problems and abnormalities that could impact manufacturing and maintenance operations. The analysis system applies algorithms to learn normal maintenance behaviors or characteristics for different types of maintenance tasks and to flag abnormal maintenance behaviors that deviate significantly from normal maintenance procedures. Based on this analysis, embodiments of the work order analysis system can identify unnecessarily costly maintenance procedures or practices, as well as predict asset failures and offer enterprise-specific recommendations intended to reduce machine downtime and optimize the maintenance process. |
---|---|
AbstractList | An industrial work order analysis system applies statistical and machine learning analytics to both open and closed work orders to identify problems and abnormalities that could impact manufacturing and maintenance operations. The analysis system applies algorithms to learn normal maintenance behaviors or characteristics for different types of maintenance tasks and to flag abnormal maintenance behaviors that deviate significantly from normal maintenance procedures. Based on this analysis, embodiments of the work order analysis system can identify unnecessarily costly maintenance procedures or practices, as well as predict asset failures and offer enterprise-specific recommendations intended to reduce machine downtime and optimize the maintenance process. |
Author | Esmalifalak, Mohammad Yu, Min Hua Mirhoseininejad, Seyedmorteza Iyengar, Akshay Emery, Francis Mathewson, Taylor Hogan, William Doulas, Peter |
Author_xml | – fullname: Doulas, Peter – fullname: Hogan, William – fullname: Mirhoseininejad, Seyedmorteza – fullname: Esmalifalak, Mohammad – fullname: Mathewson, Taylor – fullname: Emery, Francis – fullname: Yu, Min Hua – fullname: Iyengar, Akshay |
BookMark | eNqNyr0KwjAQAOAMOvj3DvcCDm0VXI_kYoPNXTkDxakUiZO0hfr-uPgATt_ybc1qnMa8MT6irQMTNITKga_QSkdKDpAlYvMAR4lsCsLgRSFi4ESMbAk60RuIOtL73qxfw3vJh587A56SrY95nvq8zMMzj_nTU3sqyupcXrCo_ihfc4ctrA |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | DÉTECTION D'ANOMALIES ALIMENTÉE PAR APPRENTISSAGE AUTOMATIQUE POUR DES ORDRES DE TRAVAIL DE MAINTENANCE AUF MASCHINENLERNEN BASIERENDE ANOMALIEERKENNUNG FÜR WARTUNGSAUFTRÄGE |
ExternalDocumentID | EP4123528A1 |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_EP4123528A13 |
IEDL.DBID | EVB |
IngestDate | Fri Aug 16 05:57:41 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English French German |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_EP4123528A13 |
Notes | Application Number: EP20220186342 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230125&DB=EPODOC&CC=EP&NR=4123528A1 |
ParticipantIDs | epo_espacenet_EP4123528A1 |
PublicationCentury | 2000 |
PublicationDate | 20230125 |
PublicationDateYYYYMMDD | 2023-01-25 |
PublicationDate_xml | – month: 01 year: 2023 text: 20230125 day: 25 |
PublicationDecade | 2020 |
PublicationYear | 2023 |
RelatedCompanies | Fiix Inc |
RelatedCompanies_xml | – name: Fiix Inc |
Score | 3.4420924 |
Snippet | An industrial work order analysis system applies statistical and machine learning analytics to both open and closed work orders to identify problems and... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
Title | MACHINE LEARNING POWERED ANOMALY DETECTION FOR MAINTENANCE WORK ORDERS |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230125&DB=EPODOC&locale=&CC=EP&NR=4123528A1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4QfN4UNeArezC9NUq7beFATGm3gtJtU1HwRLq1TbgUIjX-fWc3gF70tplNJruTzM58s_MAuBEmfbcL2tYtM0WAgi663hVFqtsOFWhvc2Hlqtsntwcv9HFqTWsw39TCqD6hX6o5ImpUhvpeqfd6-RPE8lVu5epWzJG0uA_GPV9bo2P0p9Fga36_x-LIjzzN83Cl8aRHZU2o0XERKO2gF-1IZWCvfVmUsvxtUYIj2I2RWVkdQy0vG3DgbQavNWA_XP93N2BPJWhmKySulXB1AkHoeoMhZ2TE3IQP-QOJowlLmE9cHoXu6I34bMxUcghBjEdCV_a95XIKDZlEyRNB3MeS51MgARt7Ax2PNtuKYcbi7SXMM6iXizJvAjHsontH2-3CoQj10kxktJN3CjOlBhWm021B60825__sXcChlKeMNhjWJdSrj8_8Cu1vJa6V5L4Bm5WCtw |
link.rule.ids | 230,309,783,888,25576,76882 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT4NAEJ409VFvWjXW5x4MN6KFhdJDYygsUgsLQbT11ABC0gttLMa_77Bpqxe9bWaTye4kszPf7DwAblOVvusF7cqamiBAQRdd7qdFIus9mqK9zVMtF90-ue6-0KepNm3AfFMLI_qEfonmiKhRGep7Jd7r5U8Qyxa5lau7dI6kxYMTD2xpjY7Rn0aDLdnDAQsDO7Aky8KVxKMBrWtCFcNEoLSDHrZRDztgr8O6KGX526I4h7AbIrOyOoJGXrahZW0Gr7Vh31__d7dhTyRoZiskrpVwdQyOb1ruiDPiMTPiI_5IwmDCImYTkwe-6b0Rm8VMJIcQxHjEN-u-t7yeQkMmQTQmiPtY9HwCxGGx5cp4tNlWDDMWbi-hnkKzXJT5GRBFL_r3tNstehShXpKlGTVyo1ATqtBU7fU70PmTzfk_ezfQcmPfm3kjPr6Ag1q2deRB0S6hWX185ldoi6v0WkjxG-VBhac |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=MACHINE+LEARNING+POWERED+ANOMALY+DETECTION+FOR+MAINTENANCE+WORK+ORDERS&rft.inventor=Doulas%2C+Peter&rft.inventor=Hogan%2C+William&rft.inventor=Mirhoseininejad%2C+Seyedmorteza&rft.inventor=Esmalifalak%2C+Mohammad&rft.inventor=Mathewson%2C+Taylor&rft.inventor=Emery%2C+Francis&rft.inventor=Yu%2C+Min+Hua&rft.inventor=Iyengar%2C+Akshay&rft.date=2023-01-25&rft.externalDBID=A1&rft.externalDocID=EP4123528A1 |