MACHINE LEARNING POWERED ANOMALY DETECTION FOR MAINTENANCE WORK ORDERS

An industrial work order analysis system applies statistical and machine learning analytics to both open and closed work orders to identify problems and abnormalities that could impact manufacturing and maintenance operations. The analysis system applies algorithms to learn normal maintenance behavi...

Full description

Saved in:
Bibliographic Details
Main Authors Doulas, Peter, Hogan, William, Mirhoseininejad, Seyedmorteza, Esmalifalak, Mohammad, Mathewson, Taylor, Emery, Francis, Yu, Min Hua, Iyengar, Akshay
Format Patent
LanguageEnglish
French
German
Published 25.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An industrial work order analysis system applies statistical and machine learning analytics to both open and closed work orders to identify problems and abnormalities that could impact manufacturing and maintenance operations. The analysis system applies algorithms to learn normal maintenance behaviors or characteristics for different types of maintenance tasks and to flag abnormal maintenance behaviors that deviate significantly from normal maintenance procedures. Based on this analysis, embodiments of the work order analysis system can identify unnecessarily costly maintenance procedures or practices, as well as predict asset failures and offer enterprise-specific recommendations intended to reduce machine downtime and optimize the maintenance process.
AbstractList An industrial work order analysis system applies statistical and machine learning analytics to both open and closed work orders to identify problems and abnormalities that could impact manufacturing and maintenance operations. The analysis system applies algorithms to learn normal maintenance behaviors or characteristics for different types of maintenance tasks and to flag abnormal maintenance behaviors that deviate significantly from normal maintenance procedures. Based on this analysis, embodiments of the work order analysis system can identify unnecessarily costly maintenance procedures or practices, as well as predict asset failures and offer enterprise-specific recommendations intended to reduce machine downtime and optimize the maintenance process.
Author Esmalifalak, Mohammad
Yu, Min Hua
Mirhoseininejad, Seyedmorteza
Iyengar, Akshay
Emery, Francis
Mathewson, Taylor
Hogan, William
Doulas, Peter
Author_xml – fullname: Doulas, Peter
– fullname: Hogan, William
– fullname: Mirhoseininejad, Seyedmorteza
– fullname: Esmalifalak, Mohammad
– fullname: Mathewson, Taylor
– fullname: Emery, Francis
– fullname: Yu, Min Hua
– fullname: Iyengar, Akshay
BookMark eNqNyr0KwjAQAOAMOvj3DvcCDm0VXI_kYoPNXTkDxakUiZO0hfr-uPgATt_ybc1qnMa8MT6irQMTNITKga_QSkdKDpAlYvMAR4lsCsLgRSFi4ESMbAk60RuIOtL73qxfw3vJh587A56SrY95nvq8zMMzj_nTU3sqyupcXrCo_ihfc4ctrA
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
DocumentTitleAlternate DÉTECTION D'ANOMALIES ALIMENTÉE PAR APPRENTISSAGE AUTOMATIQUE POUR DES ORDRES DE TRAVAIL DE MAINTENANCE
AUF MASCHINENLERNEN BASIERENDE ANOMALIEERKENNUNG FÜR WARTUNGSAUFTRÄGE
ExternalDocumentID EP4123528A1
GroupedDBID EVB
ID FETCH-epo_espacenet_EP4123528A13
IEDL.DBID EVB
IngestDate Fri Aug 16 05:57:41 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
French
German
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_EP4123528A13
Notes Application Number: EP20220186342
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230125&DB=EPODOC&CC=EP&NR=4123528A1
ParticipantIDs epo_espacenet_EP4123528A1
PublicationCentury 2000
PublicationDate 20230125
PublicationDateYYYYMMDD 2023-01-25
PublicationDate_xml – month: 01
  year: 2023
  text: 20230125
  day: 25
PublicationDecade 2020
PublicationYear 2023
RelatedCompanies Fiix Inc
RelatedCompanies_xml – name: Fiix Inc
Score 3.4420924
Snippet An industrial work order analysis system applies statistical and machine learning analytics to both open and closed work orders to identify problems and...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
Title MACHINE LEARNING POWERED ANOMALY DETECTION FOR MAINTENANCE WORK ORDERS
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230125&DB=EPODOC&locale=&CC=EP&NR=4123528A1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4QfN4UNeArezC9NUq7beFATGm3gtJtU1HwRLq1TbgUIjX-fWc3gF70tplNJruTzM58s_MAuBEmfbcL2tYtM0WAgi663hVFqtsOFWhvc2Hlqtsntwcv9HFqTWsw39TCqD6hX6o5ImpUhvpeqfd6-RPE8lVu5epWzJG0uA_GPV9bo2P0p9Fga36_x-LIjzzN83Cl8aRHZU2o0XERKO2gF-1IZWCvfVmUsvxtUYIj2I2RWVkdQy0vG3DgbQavNWA_XP93N2BPJWhmKySulXB1AkHoeoMhZ2TE3IQP-QOJowlLmE9cHoXu6I34bMxUcghBjEdCV_a95XIKDZlEyRNB3MeS51MgARt7Ax2PNtuKYcbi7SXMM6iXizJvAjHsontH2-3CoQj10kxktJN3CjOlBhWm021B60825__sXcChlKeMNhjWJdSrj8_8Cu1vJa6V5L4Bm5WCtw
link.rule.ids 230,309,783,888,25576,76882
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT4NAEJ409VFvWjXW5x4MN6KFhdJDYygsUgsLQbT11ABC0gttLMa_77Bpqxe9bWaTye4kszPf7DwAblOVvusF7cqamiBAQRdd7qdFIus9mqK9zVMtF90-ue6-0KepNm3AfFMLI_qEfonmiKhRGep7Jd7r5U8Qyxa5lau7dI6kxYMTD2xpjY7Rn0aDLdnDAQsDO7Aky8KVxKMBrWtCFcNEoLSDHrZRDztgr8O6KGX526I4h7AbIrOyOoJGXrahZW0Gr7Vh31__d7dhTyRoZiskrpVwdQyOb1ruiDPiMTPiI_5IwmDCImYTkwe-6b0Rm8VMJIcQxHjEN-u-t7yeQkMmQTQmiPtY9HwCxGGx5cp4tNlWDDMWbi-hnkKzXJT5GRBFL_r3tNstehShXpKlGTVyo1ATqtBU7fU70PmTzfk_ezfQcmPfm3kjPr6Ag1q2deRB0S6hWX185ldoi6v0WkjxG-VBhac
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=MACHINE+LEARNING+POWERED+ANOMALY+DETECTION+FOR+MAINTENANCE+WORK+ORDERS&rft.inventor=Doulas%2C+Peter&rft.inventor=Hogan%2C+William&rft.inventor=Mirhoseininejad%2C+Seyedmorteza&rft.inventor=Esmalifalak%2C+Mohammad&rft.inventor=Mathewson%2C+Taylor&rft.inventor=Emery%2C+Francis&rft.inventor=Yu%2C+Min+Hua&rft.inventor=Iyengar%2C+Akshay&rft.date=2023-01-25&rft.externalDBID=A1&rft.externalDocID=EP4123528A1