DERIVING A CONCORDANT SOFTWARE NEURAL NETWORK LAYER FROM A QUANTIZED FIRMWARE NEURAL NETWORK LAYER

Systems and methods for deriving a concordant software neural network layer are provided. A method includes receiving first instructions configured to, using a neural network processor (NNP), process a first set of data corresponding to a neural network layer, where the NNP is configured to quantize...

Full description

Saved in:
Bibliographic Details
Main Authors DANGWAL, Deeksha, FOWERS, Jeremy, LO, Daniel
Format Patent
LanguageEnglish
French
German
Published 05.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Systems and methods for deriving a concordant software neural network layer are provided. A method includes receiving first instructions configured to, using a neural network processor (NNP), process a first set of data corresponding to a neural network layer, where the NNP is configured to quantize the first set of the data to generate a set of quantized data and then perform matrix-vector multiply operations on the set of quantized data using a matrix-vector-multiplier incorporated within hardware associated with the NNP to generate a first set of results. The method further includes processing the first instructions to automatically generate second instructions configured for use with at least one processor, different from the NNP, such that the second instructions, when executed by the at least one processor to perform matrix multiply operations, generate a second set of results that are concordant with the first set of results.
AbstractList Systems and methods for deriving a concordant software neural network layer are provided. A method includes receiving first instructions configured to, using a neural network processor (NNP), process a first set of data corresponding to a neural network layer, where the NNP is configured to quantize the first set of the data to generate a set of quantized data and then perform matrix-vector multiply operations on the set of quantized data using a matrix-vector-multiplier incorporated within hardware associated with the NNP to generate a first set of results. The method further includes processing the first instructions to automatically generate second instructions configured for use with at least one processor, different from the NNP, such that the second instructions, when executed by the at least one processor to perform matrix multiply operations, generate a second set of results that are concordant with the first set of results.
Author FOWERS, Jeremy
LO, Daniel
DANGWAL, Deeksha
Author_xml – fullname: DANGWAL, Deeksha
– fullname: FOWERS, Jeremy
– fullname: LO, Daniel
BookMark eNrjYmDJy89L5WRIcnEN8gzz9HNXcFRw9vdz9g9ycfQLUQj2dwsJdwxyVfBzDQ1y9AFSIeH-Qd4KPo6RrkEKbkH-vkD1gaFApZ5Rri4Kbp5BvjiV8zCwpiXmFKfyQmluBgU31xBnD93Ugvz41OKCxOTUvNSSeNcAY0tjQ3MzY0dDYyKUAADtezWh
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
DocumentTitleAlternate ABLEITUNG EINER KONKORDANTEN NEURONALEN SOFTWARENETZSCHICHT EINER QUANTISIERTEN NEURONALEN FIRMWARENETZSCHICHT
DÉRIVATION D'UNE COUCHE DE RÉSEAU NEURONAL DE LOGICIEL CONCORDANT À PARTIR D'UNE COUCHE DE RÉSEAU NEURONAL DE MICROLOGICIEL QUANTIFIÉ
ExternalDocumentID EP3931763A1
GroupedDBID EVB
ID FETCH-epo_espacenet_EP3931763A13
IEDL.DBID EVB
IngestDate Fri Nov 08 04:41:29 EST 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
French
German
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_EP3931763A13
Notes Application Number: EP20200712747
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220105&DB=EPODOC&CC=EP&NR=3931763A1
ParticipantIDs epo_espacenet_EP3931763A1
PublicationCentury 2000
PublicationDate 20220105
PublicationDateYYYYMMDD 2022-01-05
PublicationDate_xml – month: 01
  year: 2022
  text: 20220105
  day: 05
PublicationDecade 2020
PublicationYear 2022
RelatedCompanies Microsoft Technology Licensing, LLC
RelatedCompanies_xml – name: Microsoft Technology Licensing, LLC
Score 3.3765836
Snippet Systems and methods for deriving a concordant software neural network layer are provided. A method includes receiving first instructions configured to, using a...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
Title DERIVING A CONCORDANT SOFTWARE NEURAL NETWORK LAYER FROM A QUANTIZED FIRMWARE NEURAL NETWORK LAYER
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220105&DB=EPODOC&locale=&CC=EP&NR=3931763A1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT4MwFH9Z5udNp8b5lR4MN-IyCsiBGAbFTQcslX3oZSmsJLuwxWH8932QbXqZpzbtS9O-5PX3fq-vLcC9JiXCUvsRSY5uqTQTMzVJhK4aglIqNVNqsox3BKHRHdKXiT6pwXxzF6Z6J_S7ehwRLSpFey-q_Xr5G8TyqtzK1UMyx6bFkx_bnrJmx-3ybFdXvI7NBpEXuYrrYk0Jua1ZCJSG5iBR2kMv2iyNgY065aWU5V9E8U9gf4CD5cUp1GTegCN38_FaAw6D9Xl3Aw6qBM10hY1rI1ydQeIh-Rr1wmfiEDdCUs49J4zJW-THY4czErIhd_pYxOOIv5K-88448XkUoDw6sGHc-2Ae8Xs82Cl-DsRnsdtVcdrTrYqmbLBdoHYB9XyRy0sgGRVZalpWO6UGbaWZaCVmlgoxQ9i3dKE1oblzmKt_-q7huNR1FYnQb6BefH7JW8TmIrmrtPoDgl2Lxw
link.rule.ids 230,309,783,888,25576,76876
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5VvMoGBUR5ekDZIqrGSchQoTRxaGgelUkfsFRJ6khd0ooG8fe5RG1hKZMt-2TZJ52_-85nG-BBEQJhqf2EJEc1ZJrFMzlJYlXWYkqpUHShiDLe4Qdab0hfJ-qkBvPNXZjqndDv6nFEtKgU7b2o9uvlbxDLrnIrV4_JHJsWz07UsaU1O26XZ7uqZHc7bBDaoSVZFtakgHcUA4FSU0wkSvvoYeulMbBRt7yUsvyLKM4JHAxwsLw4hZrIG1C3Nh-vNeDIX593N-CwStBMV9i4NsLVGSQ2kq-RG7wQk1ghknJum0FE3kInGpuckYANuelhEY1D3iee-c44cXjoozw6sEHkfjCbOC73d4qfA3FYZPVknPZ0q6IpG2wXqFzAXr7IxSWQjMZZqhtGO6UabaVZ3Er0LI3jGcK-ocZKE5o7h7n6p-8e6r3I96aeG_Sv4bjUexWVUG9gr_j8EreI00VyV2n4Bz3ejro
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=DERIVING+A+CONCORDANT+SOFTWARE+NEURAL+NETWORK+LAYER+FROM+A+QUANTIZED+FIRMWARE+NEURAL+NETWORK+LAYER&rft.inventor=DANGWAL%2C+Deeksha&rft.inventor=FOWERS%2C+Jeremy&rft.inventor=LO%2C+Daniel&rft.date=2022-01-05&rft.externalDBID=A1&rft.externalDocID=EP3931763A1