DERIVING A CONCORDANT SOFTWARE NEURAL NETWORK LAYER FROM A QUANTIZED FIRMWARE NEURAL NETWORK LAYER
Systems and methods for deriving a concordant software neural network layer are provided. A method includes receiving first instructions configured to, using a neural network processor (NNP), process a first set of data corresponding to a neural network layer, where the NNP is configured to quantize...
Saved in:
Main Authors | , , |
---|---|
Format | Patent |
Language | English French German |
Published |
05.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Systems and methods for deriving a concordant software neural network layer are provided. A method includes receiving first instructions configured to, using a neural network processor (NNP), process a first set of data corresponding to a neural network layer, where the NNP is configured to quantize the first set of the data to generate a set of quantized data and then perform matrix-vector multiply operations on the set of quantized data using a matrix-vector-multiplier incorporated within hardware associated with the NNP to generate a first set of results. The method further includes processing the first instructions to automatically generate second instructions configured for use with at least one processor, different from the NNP, such that the second instructions, when executed by the at least one processor to perform matrix multiply operations, generate a second set of results that are concordant with the first set of results. |
---|---|
AbstractList | Systems and methods for deriving a concordant software neural network layer are provided. A method includes receiving first instructions configured to, using a neural network processor (NNP), process a first set of data corresponding to a neural network layer, where the NNP is configured to quantize the first set of the data to generate a set of quantized data and then perform matrix-vector multiply operations on the set of quantized data using a matrix-vector-multiplier incorporated within hardware associated with the NNP to generate a first set of results. The method further includes processing the first instructions to automatically generate second instructions configured for use with at least one processor, different from the NNP, such that the second instructions, when executed by the at least one processor to perform matrix multiply operations, generate a second set of results that are concordant with the first set of results. |
Author | FOWERS, Jeremy LO, Daniel DANGWAL, Deeksha |
Author_xml | – fullname: DANGWAL, Deeksha – fullname: FOWERS, Jeremy – fullname: LO, Daniel |
BookMark | eNrjYmDJy89L5WRIcnEN8gzz9HNXcFRw9vdz9g9ycfQLUQj2dwsJdwxyVfBzDQ1y9AFSIeH-Qd4KPo6RrkEKbkH-vkD1gaFApZ5Rri4Kbp5BvjiV8zCwpiXmFKfyQmluBgU31xBnD93Ugvz41OKCxOTUvNSSeNcAY0tjQ3MzY0dDYyKUAADtezWh |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | ABLEITUNG EINER KONKORDANTEN NEURONALEN SOFTWARENETZSCHICHT EINER QUANTISIERTEN NEURONALEN FIRMWARENETZSCHICHT DÉRIVATION D'UNE COUCHE DE RÉSEAU NEURONAL DE LOGICIEL CONCORDANT À PARTIR D'UNE COUCHE DE RÉSEAU NEURONAL DE MICROLOGICIEL QUANTIFIÉ |
ExternalDocumentID | EP3931763A1 |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_EP3931763A13 |
IEDL.DBID | EVB |
IngestDate | Fri Nov 08 04:41:29 EST 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English French German |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_EP3931763A13 |
Notes | Application Number: EP20200712747 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220105&DB=EPODOC&CC=EP&NR=3931763A1 |
ParticipantIDs | epo_espacenet_EP3931763A1 |
PublicationCentury | 2000 |
PublicationDate | 20220105 |
PublicationDateYYYYMMDD | 2022-01-05 |
PublicationDate_xml | – month: 01 year: 2022 text: 20220105 day: 05 |
PublicationDecade | 2020 |
PublicationYear | 2022 |
RelatedCompanies | Microsoft Technology Licensing, LLC |
RelatedCompanies_xml | – name: Microsoft Technology Licensing, LLC |
Score | 3.3765836 |
Snippet | Systems and methods for deriving a concordant software neural network layer are provided. A method includes receiving first instructions configured to, using a... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
Title | DERIVING A CONCORDANT SOFTWARE NEURAL NETWORK LAYER FROM A QUANTIZED FIRMWARE NEURAL NETWORK LAYER |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220105&DB=EPODOC&locale=&CC=EP&NR=3931763A1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT4MwFH9Z5udNp8b5lR4MN-IyCsiBGAbFTQcslX3oZSmsJLuwxWH8932QbXqZpzbtS9O-5PX3fq-vLcC9JiXCUvsRSY5uqTQTMzVJhK4aglIqNVNqsox3BKHRHdKXiT6pwXxzF6Z6J_S7ehwRLSpFey-q_Xr5G8TyqtzK1UMyx6bFkx_bnrJmx-3ybFdXvI7NBpEXuYrrYk0Jua1ZCJSG5iBR2kMv2iyNgY065aWU5V9E8U9gf4CD5cUp1GTegCN38_FaAw6D9Xl3Aw6qBM10hY1rI1ydQeIh-Rr1wmfiEDdCUs49J4zJW-THY4czErIhd_pYxOOIv5K-88448XkUoDw6sGHc-2Ae8Xs82Cl-DsRnsdtVcdrTrYqmbLBdoHYB9XyRy0sgGRVZalpWO6UGbaWZaCVmlgoxQ9i3dKE1oblzmKt_-q7huNR1FYnQb6BefH7JW8TmIrmrtPoDgl2Lxw |
link.rule.ids | 230,309,783,888,25576,76876 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5VvMoGBUR5ekDZIqrGSchQoTRxaGgelUkfsFRJ6khd0ooG8fe5RG1hKZMt-2TZJ52_-85nG-BBEQJhqf2EJEc1ZJrFMzlJYlXWYkqpUHShiDLe4Qdab0hfJ-qkBvPNXZjqndDv6nFEtKgU7b2o9uvlbxDLrnIrV4_JHJsWz07UsaU1O26XZ7uqZHc7bBDaoSVZFtakgHcUA4FSU0wkSvvoYeulMbBRt7yUsvyLKM4JHAxwsLw4hZrIG1C3Nh-vNeDIX593N-CwStBMV9i4NsLVGSQ2kq-RG7wQk1ghknJum0FE3kInGpuckYANuelhEY1D3iee-c44cXjoozw6sEHkfjCbOC73d4qfA3FYZPVknPZ0q6IpG2wXqFzAXr7IxSWQjMZZqhtGO6UabaVZ3Er0LI3jGcK-ocZKE5o7h7n6p-8e6r3I96aeG_Sv4bjUexWVUG9gr_j8EreI00VyV2n4Bz3ejro |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=DERIVING+A+CONCORDANT+SOFTWARE+NEURAL+NETWORK+LAYER+FROM+A+QUANTIZED+FIRMWARE+NEURAL+NETWORK+LAYER&rft.inventor=DANGWAL%2C+Deeksha&rft.inventor=FOWERS%2C+Jeremy&rft.inventor=LO%2C+Daniel&rft.date=2022-01-05&rft.externalDBID=A1&rft.externalDocID=EP3931763A1 |