SYSTEM AND METHOD FOR EVALUATING AND DEPLOYING UNSUPERVISED OR SEMI-SUPERVISED MACHINE LEARNING MODELS

A method of evaluating and deploying machine learning models for anomaly detection of a monitored system includes providing a plurality of candidate machine learning algorithms configured for anomaly detection of the monitored system. For each type of anomalous activity, a benchmarking dataset is ge...

Full description

Saved in:
Bibliographic Details
Main Authors ZULUAGA, Maria, RENAUDIE, David, ACUNA AGOST, Rodrigo
Format Patent
LanguageEnglish
French
German
Published 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A method of evaluating and deploying machine learning models for anomaly detection of a monitored system includes providing a plurality of candidate machine learning algorithms configured for anomaly detection of the monitored system. For each type of anomalous activity, a benchmarking dataset is generated, which comprises samples drawn from a pool of negative samples, and a smaller number of samples drawn from a relevant pool of positive samples. For each combination of candidate machine learning algorithm with type of anomalous activity, the method includes drawing a plurality of training and cross-validation sets from the benchmarking dataset. Using each of the training and cross-validation sets, a machine-learning model based on the candidate algorithm is trained and validated using the cross-validation set, with average precision as a performance metric. A mean average precision value is then computed across these average precision performance metrics. A ranking value is computed for each candidate machine learning algorithm, and a machine learning algorithm is selected from the candidate machine learning algorithms based upon the computed ranking values. A machine learning model based on the selected algorithm is deployed a to a monitoring system, whereby the monitoring system executes the deployed machine learning model to detect anomalies of the monitored system.
AbstractList A method of evaluating and deploying machine learning models for anomaly detection of a monitored system includes providing a plurality of candidate machine learning algorithms configured for anomaly detection of the monitored system. For each type of anomalous activity, a benchmarking dataset is generated, which comprises samples drawn from a pool of negative samples, and a smaller number of samples drawn from a relevant pool of positive samples. For each combination of candidate machine learning algorithm with type of anomalous activity, the method includes drawing a plurality of training and cross-validation sets from the benchmarking dataset. Using each of the training and cross-validation sets, a machine-learning model based on the candidate algorithm is trained and validated using the cross-validation set, with average precision as a performance metric. A mean average precision value is then computed across these average precision performance metrics. A ranking value is computed for each candidate machine learning algorithm, and a machine learning algorithm is selected from the candidate machine learning algorithms based upon the computed ranking values. A machine learning model based on the selected algorithm is deployed a to a monitoring system, whereby the monitoring system executes the deployed machine learning model to detect anomalies of the monitored system.
Author ZULUAGA, Maria
ACUNA AGOST, Rodrigo
RENAUDIE, David
Author_xml – fullname: ZULUAGA, Maria
– fullname: RENAUDIE, David
– fullname: ACUNA AGOST, Rodrigo
BookMark eNrjYmDJy89L5WRIC44MDnH1VXD0c1HwdQ3x8HdRcPMPUnANc_QJdQzx9HMHy7i4Bvj4R4J4oX7BoQGuQWGewa4uCkCFwa6-nrpIQr6Ozh6efq4KPq6OQX4gDb7-Lq4-wTwMrGmJOcWpvFCam0HBzTXE2UM3tSA_PrW4IDE5NS-1JN41wNjUwsLYyNzR0JgIJQDJvjbF
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
DocumentTitleAlternate SYSTÈME ET PROCÉDÉ PERMETTANT D'ÉVALUER ET DE DÉPLOYER DES MODÈLES D'APPRENTISSAGE MACHINE NON SUPERVISÉS OU SEMI-SUPERVISÉS
SYSTEM UND VERFAHREN ZUR BEWERTUNG UND EINSETZUNG VON UNÜBERWACHTEN ODER HALBÜBERWACHTEN MASCHINENLERNMODELLEN
ExternalDocumentID EP3588327A1
GroupedDBID EVB
ID FETCH-epo_espacenet_EP3588327A13
IEDL.DBID EVB
IngestDate Fri Jul 19 14:50:03 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
French
German
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_EP3588327A13
Notes Application Number: EP20190178728
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200101&DB=EPODOC&CC=EP&NR=3588327A1
ParticipantIDs epo_espacenet_EP3588327A1
PublicationCentury 2000
PublicationDate 20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 20200101
  day: 01
PublicationDecade 2020
PublicationYear 2020
RelatedCompanies Amadeus S.A.S
RelatedCompanies_xml – name: Amadeus S.A.S
Score 3.2385442
Snippet A method of evaluating and deploying machine learning models for anomaly detection of a monitored system includes providing a plurality of candidate machine...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
Title SYSTEM AND METHOD FOR EVALUATING AND DEPLOYING UNSUPERVISED OR SEMI-SUPERVISED MACHINE LEARNING MODELS
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200101&DB=EPODOC&locale=&CC=EP&NR=3588327A1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb8IwDLYQe942tmnspRym3qqN9UE5oKk0YWXqS7RFcEKkpBKXgkan_f25GTAu2y1xHkqsfHFsJw7Ao2ZoXG_lmsrbuVm5GXOVWx2hioyjgEWRI_LKo-sHppvq72NjXIPF9i2MjBP6JYMjIqIyxHsp9-vVrxGLyruV6ye-QNLytZ90qbLRjl9kyDSF9rosCmnoKI6DKSUYdjXDwrXbtlFROsBTdLsCAxv1qkcpq32J0j-Dwwg7K8pzqImiASfO9uO1Bhz7G393A47kBc1sjcQNCNcXkMeTOGE-sQNKfJa4ISWoyhE2sr3UTgbBmyyhLPLCSZVLgziN2HA0iBklWDFG1qt7JN923EHAiMfsYVA18EPKvPgSSJ8ljqvi0Kc7Nk1ZtJukdgX1YlmIayDPlhDCwkOToc30luAdfTZHmJvm3DC5LqwmNP_s5uafsls4rfj9Y424g3r58SnuUT6X_EFy9huIaow6
link.rule.ids 230,309,783,888,25576,76876
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8Q_MA3RY342Qezt0VxH4wHYsZa3HTrFjYIPBEGXcLLIDLjv--tIvKib-31I-2lv17vrr0C3GuGlurNTFPTVmaWbsZMTa22UMUsRQGLIkdkpUc34KY70F9HxqgCi5-3MDJO6KcMjoiImiHeC7lfr36NWFTerVw_pAskLZ97SYcqG-34SYZMU2i3w6KQho7iOJhSeL-jGRau3ZaNitIenrBbJRjYsFs-SlntSpTeMexH2FlenEBF5HWoOT8fr9XhMNj4u-twIC9oztZI3IBwfQpZPI4TFhCbUxKwxA0pQVWOsKHtD-zE4y-yhLLID8dlbsDjQcT6Qy9mlGDFGFmv7pAC23E9zojP7D4vGwQhZX58BqTHEsdVceiTLZsmLNpOUjuHar7MxQWQR0sIYeGhydCmelOkbX06R5ib5twwU11YDWj82c3lP2V3UHOTwJ_4Hn-7gqOS99-WiWuoFu8f4gZldZHeSi5_AUm7jy0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=SYSTEM+AND+METHOD+FOR+EVALUATING+AND+DEPLOYING+UNSUPERVISED+OR+SEMI-SUPERVISED+MACHINE+LEARNING+MODELS&rft.inventor=ZULUAGA%2C+Maria&rft.inventor=RENAUDIE%2C+David&rft.inventor=ACUNA+AGOST%2C+Rodrigo&rft.date=2020-01-01&rft.externalDBID=A1&rft.externalDocID=EP3588327A1