SYSTEM AND METHOD FOR EVALUATING AND DEPLOYING UNSUPERVISED OR SEMI-SUPERVISED MACHINE LEARNING MODELS
A method of evaluating and deploying machine learning models for anomaly detection of a monitored system includes providing a plurality of candidate machine learning algorithms configured for anomaly detection of the monitored system. For each type of anomalous activity, a benchmarking dataset is ge...
Saved in:
Main Authors | , , |
---|---|
Format | Patent |
Language | English French German |
Published |
01.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A method of evaluating and deploying machine learning models for anomaly detection of a monitored system includes providing a plurality of candidate machine learning algorithms configured for anomaly detection of the monitored system. For each type of anomalous activity, a benchmarking dataset is generated, which comprises samples drawn from a pool of negative samples, and a smaller number of samples drawn from a relevant pool of positive samples. For each combination of candidate machine learning algorithm with type of anomalous activity, the method includes drawing a plurality of training and cross-validation sets from the benchmarking dataset. Using each of the training and cross-validation sets, a machine-learning model based on the candidate algorithm is trained and validated using the cross-validation set, with average precision as a performance metric. A mean average precision value is then computed across these average precision performance metrics. A ranking value is computed for each candidate machine learning algorithm, and a machine learning algorithm is selected from the candidate machine learning algorithms based upon the computed ranking values. A machine learning model based on the selected algorithm is deployed a to a monitoring system, whereby the monitoring system executes the deployed machine learning model to detect anomalies of the monitored system. |
---|---|
AbstractList | A method of evaluating and deploying machine learning models for anomaly detection of a monitored system includes providing a plurality of candidate machine learning algorithms configured for anomaly detection of the monitored system. For each type of anomalous activity, a benchmarking dataset is generated, which comprises samples drawn from a pool of negative samples, and a smaller number of samples drawn from a relevant pool of positive samples. For each combination of candidate machine learning algorithm with type of anomalous activity, the method includes drawing a plurality of training and cross-validation sets from the benchmarking dataset. Using each of the training and cross-validation sets, a machine-learning model based on the candidate algorithm is trained and validated using the cross-validation set, with average precision as a performance metric. A mean average precision value is then computed across these average precision performance metrics. A ranking value is computed for each candidate machine learning algorithm, and a machine learning algorithm is selected from the candidate machine learning algorithms based upon the computed ranking values. A machine learning model based on the selected algorithm is deployed a to a monitoring system, whereby the monitoring system executes the deployed machine learning model to detect anomalies of the monitored system. |
Author | ZULUAGA, Maria ACUNA AGOST, Rodrigo RENAUDIE, David |
Author_xml | – fullname: ZULUAGA, Maria – fullname: RENAUDIE, David – fullname: ACUNA AGOST, Rodrigo |
BookMark | eNrjYmDJy89L5WRIC44MDnH1VXD0c1HwdQ3x8HdRcPMPUnANc_QJdQzx9HMHy7i4Bvj4R4J4oX7BoQGuQWGewa4uCkCFwa6-nrpIQr6Ozh6efq4KPq6OQX4gDb7-Lq4-wTwMrGmJOcWpvFCam0HBzTXE2UM3tSA_PrW4IDE5NS-1JN41wNjUwsLYyNzR0JgIJQDJvjbF |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | SYSTÈME ET PROCÉDÉ PERMETTANT D'ÉVALUER ET DE DÉPLOYER DES MODÈLES D'APPRENTISSAGE MACHINE NON SUPERVISÉS OU SEMI-SUPERVISÉS SYSTEM UND VERFAHREN ZUR BEWERTUNG UND EINSETZUNG VON UNÜBERWACHTEN ODER HALBÜBERWACHTEN MASCHINENLERNMODELLEN |
ExternalDocumentID | EP3588327A1 |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_EP3588327A13 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 14:50:03 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English French German |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_EP3588327A13 |
Notes | Application Number: EP20190178728 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200101&DB=EPODOC&CC=EP&NR=3588327A1 |
ParticipantIDs | epo_espacenet_EP3588327A1 |
PublicationCentury | 2000 |
PublicationDate | 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 20200101 day: 01 |
PublicationDecade | 2020 |
PublicationYear | 2020 |
RelatedCompanies | Amadeus S.A.S |
RelatedCompanies_xml | – name: Amadeus S.A.S |
Score | 3.2385442 |
Snippet | A method of evaluating and deploying machine learning models for anomaly detection of a monitored system includes providing a plurality of candidate machine... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
Title | SYSTEM AND METHOD FOR EVALUATING AND DEPLOYING UNSUPERVISED OR SEMI-SUPERVISED MACHINE LEARNING MODELS |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200101&DB=EPODOC&locale=&CC=EP&NR=3588327A1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb8IwDLYQe942tmnspRym3qqN9UE5oKk0YWXqS7RFcEKkpBKXgkan_f25GTAu2y1xHkqsfHFsJw7Ao2ZoXG_lmsrbuVm5GXOVWx2hioyjgEWRI_LKo-sHppvq72NjXIPF9i2MjBP6JYMjIqIyxHsp9-vVrxGLyruV6ye-QNLytZ90qbLRjl9kyDSF9rosCmnoKI6DKSUYdjXDwrXbtlFROsBTdLsCAxv1qkcpq32J0j-Dwwg7K8pzqImiASfO9uO1Bhz7G393A47kBc1sjcQNCNcXkMeTOGE-sQNKfJa4ISWoyhE2sr3UTgbBmyyhLPLCSZVLgziN2HA0iBklWDFG1qt7JN923EHAiMfsYVA18EPKvPgSSJ8ljqvi0Kc7Nk1ZtJukdgX1YlmIayDPlhDCwkOToc30luAdfTZHmJvm3DC5LqwmNP_s5uafsls4rfj9Y424g3r58SnuUT6X_EFy9huIaow6 |
link.rule.ids | 230,309,783,888,25576,76876 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8Q_MA3RY342Qezt0VxH4wHYsZa3HTrFjYIPBEGXcLLIDLjv--tIvKib-31I-2lv17vrr0C3GuGlurNTFPTVmaWbsZMTa22UMUsRQGLIkdkpUc34KY70F9HxqgCi5-3MDJO6KcMjoiImiHeC7lfr36NWFTerVw_pAskLZ97SYcqG-34SYZMU2i3w6KQho7iOJhSeL-jGRau3ZaNitIenrBbJRjYsFs-SlntSpTeMexH2FlenEBF5HWoOT8fr9XhMNj4u-twIC9oztZI3IBwfQpZPI4TFhCbUxKwxA0pQVWOsKHtD-zE4y-yhLLID8dlbsDjQcT6Qy9mlGDFGFmv7pAC23E9zojP7D4vGwQhZX58BqTHEsdVceiTLZsmLNpOUjuHar7MxQWQR0sIYeGhydCmelOkbX06R5ib5twwU11YDWj82c3lP2V3UHOTwJ_4Hn-7gqOS99-WiWuoFu8f4gZldZHeSi5_AUm7jy0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=SYSTEM+AND+METHOD+FOR+EVALUATING+AND+DEPLOYING+UNSUPERVISED+OR+SEMI-SUPERVISED+MACHINE+LEARNING+MODELS&rft.inventor=ZULUAGA%2C+Maria&rft.inventor=RENAUDIE%2C+David&rft.inventor=ACUNA+AGOST%2C+Rodrigo&rft.date=2020-01-01&rft.externalDBID=A1&rft.externalDocID=EP3588327A1 |