PATH PREDICTION FOR A VEHICLE

The present invention relates to a method and a system (40) for predicting a near future path and an associated output control signal for a vehicle (1). For the prediction sensor data, vehicle driving data, and road data are collected. An input control signal indicative of an intended driving action...

Full description

Saved in:
Bibliographic Details
Main Authors Mohammadiha, Nasser, Movert, Anders
Format Patent
LanguageEnglish
French
German
Published 05.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The present invention relates to a method and a system (40) for predicting a near future path and an associated output control signal for a vehicle (1). For the prediction sensor data, vehicle driving data, and road data are collected. An input control signal indicative of an intended driving action is received (S608). The sensor data and the vehicle driving data is pre-processed (S610) to provide a set of object data comprising a time series of previous positions of the respective object relative the vehicle, a time series of the previous headings of the objects, and time series of previous velocities of the objects. The object data, the road data, the vehicle driving data, the control signal, and the sensor data is processed (S612) in a deep neural network. Based on the processing in the deep neural network, a predicted path output and an output control signal is provided (S614).
AbstractList The present invention relates to a method and a system (40) for predicting a near future path and an associated output control signal for a vehicle (1). For the prediction sensor data, vehicle driving data, and road data are collected. An input control signal indicative of an intended driving action is received (S608). The sensor data and the vehicle driving data is pre-processed (S610) to provide a set of object data comprising a time series of previous positions of the respective object relative the vehicle, a time series of the previous headings of the objects, and time series of previous velocities of the objects. The object data, the road data, the vehicle driving data, the control signal, and the sensor data is processed (S612) in a deep neural network. Based on the processing in the deep neural network, a predicted path output and an output control signal is provided (S614).
Author Mohammadiha, Nasser
Movert, Anders
Author_xml – fullname: Mohammadiha, Nasser
– fullname: Movert, Anders
BookMark eNrjYmDJy89L5WSQDXAM8VAICHJ18XQO8fT3U3DzD1JwVAhz9fB09nHlYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxrgHGJpamRoaWTobGRCgBAA18IjQ
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
DocumentTitleAlternate PRÉDICTION DE TRAJET POUR UN VÉHICULE
WEGVORHERSAGE FÜR EIN FAHRZEUG
ExternalDocumentID EP3495219B1
GroupedDBID EVB
ID FETCH-epo_espacenet_EP3495219B13
IEDL.DBID EVB
IngestDate Fri Jul 19 13:08:26 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
French
German
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_EP3495219B13
Notes Application Number: EP20170206445
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230705&DB=EPODOC&CC=EP&NR=3495219B1
ParticipantIDs epo_espacenet_EP3495219B1
PublicationCentury 2000
PublicationDate 20230705
PublicationDateYYYYMMDD 2023-07-05
PublicationDate_xml – month: 07
  year: 2023
  text: 20230705
  day: 05
PublicationDecade 2020
PublicationYear 2023
RelatedCompanies Volvo Car Corporation
RelatedCompanies_xml – name: Volvo Car Corporation
Score 3.4731302
Snippet The present invention relates to a method and a system (40) for predicting a near future path and an associated output control signal for a vehicle (1). For...
SourceID epo
SourceType Open Access Repository
SubjectTerms BLASTING
CALCULATING
COMBUSTION ENGINES
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION
CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES
CONTROLLING COMBUSTION ENGINES
COUNTING
HEATING
HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
LIGHTING
MECHANICAL ENGINEERING
PERFORMING OPERATIONS
PHYSICS
ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT
TRANSPORTING
VEHICLES IN GENERAL
WEAPONS
Title PATH PREDICTION FOR A VEHICLE
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230705&DB=EPODOC&locale=&CC=EP&NR=3495219B1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_G_HzTqjh1kgfpW3Gsado8DFnTlE7cVqSOvY2mH7CXOWzFf99r6KYv-hYucEkOfne55HcJwAN3OC957lnK5cyi9tCz0mxgW3nOKLNdmnqa7T6dseiNPi-dZQfWu1oY_U7ol34cERGVId5r7a-3P4dYgeZWVo9qjaL3pzAZBWabHTes5oFjBv5IxvNgLkwhsGXOXtFZcwxU3MdE6QB30W4DBrnwm6KU7e-IEp7BYYzKNvU5dIqNASdi9_GaAcfT9r7bgCNN0MwqFLYgrC6gH4-TiKDpgolmgBBM5MiYLGQ0ES_yEkgoExFZOOJqv7qVjPdzs6-gi0l_cQ3EG6bMs4sUw39OOVNepjjLaFk4jOepKnvQ-1PNzT99t3DamEkTTp076NYfn0Ufw2qt7rVBvgHLVXe2
link.rule.ids 230,309,783,888,25576,76882
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLam8Rg3KCAGDHpAvVVMa5olhwmtL7XQdhUq025Vn9IuY6JF_H3cqBtc4BY5kpNYsh0nn22AB65zXvGCqdmUU5VoE6am-VhTi4ISqk1JygTaPQip-0aeV_qqB-tdLoyoE_oliiOiRuWo742w19ufRyxLYCvrx2yNpPcnJ55ZShcdt6jmsa5YxsyOFtbCVEwTR0r4isaao6PiBgZKB3jDZm2zA3tptEkp298exTmFwwiZbZoz6JUbCQbmrvGaBMdB998twZEAaOY1EjslrM9hFM1jV0bRWZ5AgMgYyMlzeWm7nunbFyA7dmy6Kq6Y7E-X2NF-b9ol9DHoL69AZpOUMq1M0f0XhNOM5RmnOalKnfIizaohDP9kc_3P3D0M3DjwE98LX27gpBWZAJ_qt9BvPj7LEbrYJrsTwvkGj896pg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=PATH+PREDICTION+FOR+A+VEHICLE&rft.inventor=Mohammadiha%2C+Nasser&rft.inventor=Movert%2C+Anders&rft.date=2023-07-05&rft.externalDBID=B1&rft.externalDocID=EP3495219B1