INSULATION OF CONDUCTORS WITH IMPROVED SEPARABILITY FROM PROCESSED BROKEN STONE
The invention deals with insulation with improved separability from the processed broken stone designed as single-layer or multi-layer insulation surrounding an electric conductor where the principle is that at least one layer of the insulation is made of magnetic material and at the same time at le...
Saved in:
Main Authors | , , , , |
---|---|
Format | Patent |
Language | English French German |
Published |
12.08.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The invention deals with insulation with improved separability from the processed broken stone designed as single-layer or multi-layer insulation surrounding an electric conductor where the principle is that at least one layer of the insulation is made of magnetic material and at the same time at least one layer is made of electrically non-conductive material. This magnetic material is beneficially produced as a mixture of the magnetic and non-magnetic main material component while it is especially advantageous if the content of the magnetic main material component in individual insulation layers is 5 to 60% of weight and the rest to 100% consists of the non-magnetic main material component, all related to the weight of individual layers, or even better, if the content of the magnetic main material component of individual insulation layers is 10 to 30% of weight, related to the weight of individual insulation layers. The magnetic main material component is beneficially produced on the basis of magnetite -Fe3O4, or on the basis of ferrite with the general formula MeIIFe2O4, where Me represents Co, Mn, Ni, Ca, Cu, Zn, Mg, or ferrite with the general formula LnIIFe2O4, where Ln represents noble earth elements, or on the basis of noble earth elements in the oxidation degree II, or on the basis of ferric oxide in the modification gamma-Fe2O3, or on the basis of powder iron, or on the basis of a magnetic alloy of iron or on the basis of a mixture or alloy containing the above mentioned magnetic partial components, where advantageous magnetic alloys of iron are alloys containing at least noble earth elements, or especially advantageous magnetic alloys of iron are alloys containing at least another noble earth element and B and/or Co while advantageous metallic noble earth elements are Nd and Sm. Or the magnetic main material component is made on the basis of magnetically hard materials of the AlNiCo or FeCoCr type. The non-magnetic main material component is beneficially produced on the basis of plastic material, advantageously selected from the group of polymers or copolymers, mainly from the group of elastomers as silicone or butadienstyrene rubber or plastic materials as PVC, PE, PP, or PTFE. |
---|---|
Bibliography: | Application Number: EP20070817392 |