Multi-entity data stream classification method based on space-time attention graph neural network
The invention discloses a multi-entity data stream classification method based on a space-time attention graph neural network, and belongs to the field of multi-entity data stream classification, and the method comprises the steps: obtaining data of each entity at a t moment as an input data sequenc...
Saved in:
Main Authors | , , , , , , |
---|---|
Format | Patent |
Language | Chinese English |
Published |
05.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The invention discloses a multi-entity data stream classification method based on a space-time attention graph neural network, and belongs to the field of multi-entity data stream classification, and the method comprises the steps: obtaining data of each entity at a t moment as an input data sequence, and reconstructing the input data sequence into a graph structure Gt; when t is equal to 1, performing multiple times of message passing reconstruction on each node feature in the graph structure G1 by adopting a space attention mechanism to obtain a space correlation feature of each node and form a graph structure G '1; when t is greater than or equal to 2, carrying out information aggregation on the graph structure Gt and the graph structure G't-1 by adopting a time attention mechanism to obtain a graph structure G ''t, and carrying out multiple times of message passing reconstruction on each node feature in the graph structure G' 't by adopting a space attention mechanism to obtain a space correlation feature |
---|---|
AbstractList | The invention discloses a multi-entity data stream classification method based on a space-time attention graph neural network, and belongs to the field of multi-entity data stream classification, and the method comprises the steps: obtaining data of each entity at a t moment as an input data sequence, and reconstructing the input data sequence into a graph structure Gt; when t is equal to 1, performing multiple times of message passing reconstruction on each node feature in the graph structure G1 by adopting a space attention mechanism to obtain a space correlation feature of each node and form a graph structure G '1; when t is greater than or equal to 2, carrying out information aggregation on the graph structure Gt and the graph structure G't-1 by adopting a time attention mechanism to obtain a graph structure G ''t, and carrying out multiple times of message passing reconstruction on each node feature in the graph structure G' 't by adopting a space attention mechanism to obtain a space correlation feature |
Author | ZHU HONG WANG ERXI LEE DAE-HO ZUO QIONG CAO ZHONGSHENG QIAN LIPENG SUN GUANQUN |
Author_xml | – fullname: ZUO QIONG – fullname: QIAN LIPENG – fullname: SUN GUANQUN – fullname: LEE DAE-HO – fullname: ZHU HONG – fullname: WANG ERXI – fullname: CAO ZHONGSHENG |
BookMark | eNqNjDsOwjAQRF1Awe8OywFcOJEQlCgC0UBFHy3Ohlj4J3sjxO0xiANQPc3ozczFxAdPM4Hn0bKR5NnwCzpkhMyJ0IG2mLPpjUY2wYMjHkIHN8zUQck5oibJxhEg82dfynvCOICnMaEt4GdIj6WY9mgzrX5ciPXxcG1OkmJo6XtTzLa5KLWtdptK1fv6H-cNl18_7Q |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | 一种基于时空注意力图神经网络的多实体数据流分类方法 |
ExternalDocumentID | CN118296213A |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_CN118296213A3 |
IEDL.DBID | EVB |
IngestDate | Fri Nov 01 05:36:03 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | Chinese English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_CN118296213A3 |
Notes | Application Number: CN202410279039 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240705&DB=EPODOC&CC=CN&NR=118296213A |
ParticipantIDs | epo_espacenet_CN118296213A |
PublicationCentury | 2000 |
PublicationDate | 20240705 |
PublicationDateYYYYMMDD | 2024-07-05 |
PublicationDate_xml | – month: 07 year: 2024 text: 20240705 day: 05 |
PublicationDecade | 2020 |
PublicationYear | 2024 |
RelatedCompanies | STATE GRID HUBEI ELECTRIC POWER CO., LTD. ELECTRIC POWER RESEARCH INSTITUTE HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY |
RelatedCompanies_xml | – name: STATE GRID HUBEI ELECTRIC POWER CO., LTD. ELECTRIC POWER RESEARCH INSTITUTE – name: HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY |
Score | 3.685036 |
Snippet | The invention discloses a multi-entity data stream classification method based on a space-time attention graph neural network, and belongs to the field of... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
Title | Multi-entity data stream classification method based on space-time attention graph neural network |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240705&DB=EPODOC&locale=&CC=CN&NR=118296213A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8NAEB1q_bxpVbR-sILkttgkTdIcgthNQxGaFqnSW9lstlTRttiI6K93Z2ytFz2FbGDJDExmJvveG4DLuh1o5eYB91Q24nhgyENXS64ck458d1SzMyQ4d1K_fV-_HXiDEjwtuTCkE_pO4ogmopSJ94K-17PVT6yYsJXzq-zRLE2vk34UW4vuGNuTmmfFzajV68ZdYQkRidRK7yKso0Pfsd2bNVg3ZXSA0dB6aCIrZfY7pSS7sNEzu02KPSh9jiuwLZaT1yqw1VkceFdgkxCaam4WF1E43wdJrFlODNsPhhhPhpQP-cIU1sII_iET2Pd4aIaZKmfmnmzlOE6eoawmAR0ZSVYz1LWUz-ZCqPADuEhafdHm5q2HPy4ainRloHsI5cl0oo-AqUauG472wlwGphNyskzndsNHlb96IJU8hurf-1T_e3gCO-huAq56p1AuXt_0mUnPRXZOfv0CqDeWQA |
link.rule.ids | 230,309,783,888,25576,76876 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8JAEJ0gfuBNUaP4tSamt422pS0cGiNbCCoUYtBwI9vtEjUKRGqM_np3RhAvemq6TTadSaYz033vDcBp2Q60ctOAeyoZcjww5FVXS64ck458d3huJ0hwbsd-86583ff6OXiac2FIJ_SdxBFNRCkT7xl9ryeLn1gRYSunZ8mjWRpfNHphZM26Y2xPzj0rqoX1bifqCEuIUMRWfBtiHV31Hdu9XIJlU2IHGA31-xqyUia_U0pjA1a6ZrdRtgm5z4ciFMR88loR1tqzA-8irBJCU03N4iwKp1sgiTXLiWH7wRDjyZDyIV-YwloYwT9kAvseD80wU6XM3JOtHMfJM5TVJKAjI8lqhrqW8tlcCBW-DSeNek80uXnrwY-LBiJeGOjuQH40HuldYKqS6oqjvWoqA9MJOUmiU7vio8pfOZBK7kHp731K_z08hkKz124NWlfxzT6so-sJxOodQD57fdOHJlVnyRH5-AvhFpkz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Multi-entity+data+stream+classification+method+based+on+space-time+attention+graph+neural+network&rft.inventor=ZUO+QIONG&rft.inventor=QIAN+LIPENG&rft.inventor=SUN+GUANQUN&rft.inventor=LEE+DAE-HO&rft.inventor=ZHU+HONG&rft.inventor=WANG+ERXI&rft.inventor=CAO+ZHONGSHENG&rft.date=2024-07-05&rft.externalDBID=A&rft.externalDocID=CN118296213A |