Multi-entity data stream classification method based on space-time attention graph neural network

The invention discloses a multi-entity data stream classification method based on a space-time attention graph neural network, and belongs to the field of multi-entity data stream classification, and the method comprises the steps: obtaining data of each entity at a t moment as an input data sequenc...

Full description

Saved in:
Bibliographic Details
Main Authors ZUO QIONG, QIAN LIPENG, SUN GUANQUN, LEE DAE-HO, ZHU HONG, WANG ERXI, CAO ZHONGSHENG
Format Patent
LanguageChinese
English
Published 05.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The invention discloses a multi-entity data stream classification method based on a space-time attention graph neural network, and belongs to the field of multi-entity data stream classification, and the method comprises the steps: obtaining data of each entity at a t moment as an input data sequence, and reconstructing the input data sequence into a graph structure Gt; when t is equal to 1, performing multiple times of message passing reconstruction on each node feature in the graph structure G1 by adopting a space attention mechanism to obtain a space correlation feature of each node and form a graph structure G '1; when t is greater than or equal to 2, carrying out information aggregation on the graph structure Gt and the graph structure G't-1 by adopting a time attention mechanism to obtain a graph structure G ''t, and carrying out multiple times of message passing reconstruction on each node feature in the graph structure G' 't by adopting a space attention mechanism to obtain a space correlation feature
AbstractList The invention discloses a multi-entity data stream classification method based on a space-time attention graph neural network, and belongs to the field of multi-entity data stream classification, and the method comprises the steps: obtaining data of each entity at a t moment as an input data sequence, and reconstructing the input data sequence into a graph structure Gt; when t is equal to 1, performing multiple times of message passing reconstruction on each node feature in the graph structure G1 by adopting a space attention mechanism to obtain a space correlation feature of each node and form a graph structure G '1; when t is greater than or equal to 2, carrying out information aggregation on the graph structure Gt and the graph structure G't-1 by adopting a time attention mechanism to obtain a graph structure G ''t, and carrying out multiple times of message passing reconstruction on each node feature in the graph structure G' 't by adopting a space attention mechanism to obtain a space correlation feature
Author ZHU HONG
WANG ERXI
LEE DAE-HO
ZUO QIONG
CAO ZHONGSHENG
QIAN LIPENG
SUN GUANQUN
Author_xml – fullname: ZUO QIONG
– fullname: QIAN LIPENG
– fullname: SUN GUANQUN
– fullname: LEE DAE-HO
– fullname: ZHU HONG
– fullname: WANG ERXI
– fullname: CAO ZHONGSHENG
BookMark eNqNjDsOwjAQRF1Awe8OywFcOJEQlCgC0UBFHy3Ohlj4J3sjxO0xiANQPc3ozczFxAdPM4Hn0bKR5NnwCzpkhMyJ0IG2mLPpjUY2wYMjHkIHN8zUQck5oibJxhEg82dfynvCOICnMaEt4GdIj6WY9mgzrX5ciPXxcG1OkmJo6XtTzLa5KLWtdptK1fv6H-cNl18_7Q
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
DocumentTitleAlternate 一种基于时空注意力图神经网络的多实体数据流分类方法
ExternalDocumentID CN118296213A
GroupedDBID EVB
ID FETCH-epo_espacenet_CN118296213A3
IEDL.DBID EVB
IngestDate Fri Nov 01 05:36:03 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_CN118296213A3
Notes Application Number: CN202410279039
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240705&DB=EPODOC&CC=CN&NR=118296213A
ParticipantIDs epo_espacenet_CN118296213A
PublicationCentury 2000
PublicationDate 20240705
PublicationDateYYYYMMDD 2024-07-05
PublicationDate_xml – month: 07
  year: 2024
  text: 20240705
  day: 05
PublicationDecade 2020
PublicationYear 2024
RelatedCompanies STATE GRID HUBEI ELECTRIC POWER CO., LTD. ELECTRIC POWER RESEARCH INSTITUTE
HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY
RelatedCompanies_xml – name: STATE GRID HUBEI ELECTRIC POWER CO., LTD. ELECTRIC POWER RESEARCH INSTITUTE
– name: HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY
Score 3.685036
Snippet The invention discloses a multi-entity data stream classification method based on a space-time attention graph neural network, and belongs to the field of...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
Title Multi-entity data stream classification method based on space-time attention graph neural network
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240705&DB=EPODOC&locale=&CC=CN&NR=118296213A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8NAEB1q_bxpVbR-sILkttgkTdIcgthNQxGaFqnSW9lstlTRttiI6K93Z2ytFz2FbGDJDExmJvveG4DLuh1o5eYB91Q24nhgyENXS64ck458d1SzMyQ4d1K_fV-_HXiDEjwtuTCkE_pO4ogmopSJ94K-17PVT6yYsJXzq-zRLE2vk34UW4vuGNuTmmfFzajV68ZdYQkRidRK7yKso0Pfsd2bNVg3ZXSA0dB6aCIrZfY7pSS7sNEzu02KPSh9jiuwLZaT1yqw1VkceFdgkxCaam4WF1E43wdJrFlODNsPhhhPhpQP-cIU1sII_iET2Pd4aIaZKmfmnmzlOE6eoawmAR0ZSVYz1LWUz-ZCqPADuEhafdHm5q2HPy4ainRloHsI5cl0oo-AqUauG472wlwGphNyskzndsNHlb96IJU8hurf-1T_e3gCO-huAq56p1AuXt_0mUnPRXZOfv0CqDeWQA
link.rule.ids 230,309,783,888,25576,76876
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8JAEJ0gfuBNUaP4tSamt422pS0cGiNbCCoUYtBwI9vtEjUKRGqM_np3RhAvemq6TTadSaYz033vDcBp2Q60ctOAeyoZcjww5FVXS64ck458d3huJ0hwbsd-86583ff6OXiac2FIJ_SdxBFNRCkT7xl9ryeLn1gRYSunZ8mjWRpfNHphZM26Y2xPzj0rqoX1bifqCEuIUMRWfBtiHV31Hdu9XIJlU2IHGA31-xqyUia_U0pjA1a6ZrdRtgm5z4ciFMR88loR1tqzA-8irBJCU03N4iwKp1sgiTXLiWH7wRDjyZDyIV-YwloYwT9kAvseD80wU6XM3JOtHMfJM5TVJKAjI8lqhrqW8tlcCBW-DSeNek80uXnrwY-LBiJeGOjuQH40HuldYKqS6oqjvWoqA9MJOUmiU7vio8pfOZBK7kHp731K_z08hkKz124NWlfxzT6so-sJxOodQD57fdOHJlVnyRH5-AvhFpkz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Multi-entity+data+stream+classification+method+based+on+space-time+attention+graph+neural+network&rft.inventor=ZUO+QIONG&rft.inventor=QIAN+LIPENG&rft.inventor=SUN+GUANQUN&rft.inventor=LEE+DAE-HO&rft.inventor=ZHU+HONG&rft.inventor=WANG+ERXI&rft.inventor=CAO+ZHONGSHENG&rft.date=2024-07-05&rft.externalDBID=A&rft.externalDocID=CN118296213A