Fracturing sand plugging risk early warning method based on deep learning and double logarithmic curves
The invention discloses a fracturing sand plugging risk early warning method based on deep learning and a double logarithmic curve. The method comprises the following steps that S1, multiple construction parameter time sequences in the fracturing construction process are collected; s2, on the basis...
Saved in:
Main Authors | , , , , , , , , , , , , |
---|---|
Format | Patent |
Language | Chinese English |
Published |
11.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The invention discloses a fracturing sand plugging risk early warning method based on deep learning and a double logarithmic curve. The method comprises the following steps that S1, multiple construction parameter time sequences in the fracturing construction process are collected; s2, on the basis of the time sequence in the step S1, predicting a future time sequence of each construction parameter by using a time sequence time domain analysis algorithm; s3, constructing and training an L-Aresnet network so as to correct the predicted value of each construction parameter in the future time sequence; s4, according to the time sequence change curve of the future sample value of each construction parameter obtained in the step S3, calculating a log value lgK of the slope K of the future change curve of each construction parameter as an early warning judgment value, and comparing the log value lgK with an early warning critical value; according to the method, multiple construction parameters, easy to monitor, of |
---|---|
AbstractList | The invention discloses a fracturing sand plugging risk early warning method based on deep learning and a double logarithmic curve. The method comprises the following steps that S1, multiple construction parameter time sequences in the fracturing construction process are collected; s2, on the basis of the time sequence in the step S1, predicting a future time sequence of each construction parameter by using a time sequence time domain analysis algorithm; s3, constructing and training an L-Aresnet network so as to correct the predicted value of each construction parameter in the future time sequence; s4, according to the time sequence change curve of the future sample value of each construction parameter obtained in the step S3, calculating a log value lgK of the slope K of the future change curve of each construction parameter as an early warning judgment value, and comparing the log value lgK with an early warning critical value; according to the method, multiple construction parameters, easy to monitor, of |
Author | DU HUIMIN LIN CHUNLAI WEI MIAN ZHU NAN YANG XIN LIU YIJIA WANG FANGXIANG HUANG QI GENG TENG WANG LIN DONG BINGXIANG LI NAN SHAO JUNLONG |
Author_xml | – fullname: WANG LIN – fullname: ZHU NAN – fullname: WEI MIAN – fullname: LIU YIJIA – fullname: HUANG QI – fullname: WANG FANGXIANG – fullname: GENG TENG – fullname: YANG XIN – fullname: DONG BINGXIANG – fullname: LI NAN – fullname: LIN CHUNLAI – fullname: DU HUIMIN – fullname: SHAO JUNLONG |
BookMark | eNqNizsOwjAQRF1Awe8OywEoDIpCiyIiKir6aGMvjoVjW2sbxO1RpByAajRv3qzFwgdPK2FaRpULW28godcQXTFmamzTCwjZfeGD7Cc0Uh6Chh4TaQgeNFEER_M6vXUovSNwwSDbPIxWgSr8prQVyye6RLs5N2LfXh_N7UAxdJQiKvKUu-Yu5VnWsqqOl9M_zg8iJUHS |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | 一种基于深度学习和双对数曲线的压裂砂堵风险预警方法 |
ExternalDocumentID | CN118171552A |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_CN118171552A3 |
IEDL.DBID | EVB |
IngestDate | Fri Sep 06 06:15:51 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | Chinese English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_CN118171552A3 |
Notes | Application Number: CN202211570716 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240611&DB=EPODOC&CC=CN&NR=118171552A |
ParticipantIDs | epo_espacenet_CN118171552A |
PublicationCentury | 2000 |
PublicationDate | 20240611 |
PublicationDateYYYYMMDD | 2024-06-11 |
PublicationDate_xml | – month: 06 year: 2024 text: 20240611 day: 11 |
PublicationDecade | 2020 |
PublicationYear | 2024 |
RelatedCompanies | CHINA NATIONAL PETROLEUM CORPORATION CNPC BOHAI DRILLING ENGINEERING COMPANY LIMITED |
RelatedCompanies_xml | – name: CHINA NATIONAL PETROLEUM CORPORATION – name: CNPC BOHAI DRILLING ENGINEERING COMPANY LIMITED |
Score | 3.680563 |
Snippet | The invention discloses a fracturing sand plugging risk early warning method based on deep learning and a double logarithmic curve. The method comprises the... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
Title | Fracturing sand plugging risk early warning method based on deep learning and double logarithmic curves |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240611&DB=EPODOC&locale=&CC=CN&NR=118171552A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_m_HzTqej8IIL0rWg_1o-HIi5dGcK6IVP2Ntok3SbalrVz4F9vknXOF31NyJEc3F1y-f3uAG7pfeJEemypJG4lqqlTV41cg6gGoaZGKHF1SxCFe6HVfTGfRq1RDd7WXBhZJ3QpiyNyiyLc3kvpr_NNEsuX2MriLp7xoewhGHq-Ur2OZXjSFL_tdQZ9v48VjD0cKuGzJ_iVtig39rgF2_wabQv4V-e1LVgp-e-QEhzCzoBLS8sjqH1NG7CP153XGrDXqz68G7ArEZqk4IOVFRbHMAkEtUnyC1ERpRTl7wuROJ4gARRHTNQsRstVygOtWkQjEa0oylJEGctR1StigsRqmvFTM8SdIH83l9OPGUFkMf9kxQncBJ0h7qp87-MfRY1xuDmmcQr1NEvZGSBi6aZxH5s2YS0z0ZkbMz22SeQ6WpI4zDmH5t9ymv9NXsCBULqATmnaJdTL-YJd8SBdxtdSu9_LYJkE |
link.rule.ids | 230,309,783,888,25578,76884 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8gfuCbokbxqyZmb4vsg7E9LEY2FlQYxKDhjWxtBxjdFjYk8a-3LUN90dc2bXptrte73u93ANekHpmBGhoyDhuRrKvEkgNLw7KGia5ggi3V4EDhnm90nvWHUWNUgtc1FkbwhC4FOSLTKMz0PRf3dfoTxHJFbmV2E85YU3LrDW1XKrxjYZ4UyW3Z7UHf7TuS49iOL_lPNsdXNjnd2N0GbLIntsl59tsvLY5KSX-bFG8PtgZstjjfh9LntAoVZ115rQo7veLDuwrbIkMTZ6yx0MLsACYehzYJfCHKgpig9G3BA8cTxBPFEeWcxWi5CnmgVYloxK0VQUmMCKUpKmpFTBAfTRImNUXsEmR-cz59n2GEF_MPmh3CldceOh2ZrX38vVFjx_8RUzuCcpzE9BgQNlRdq4d6E9OGHqnUCqkaNnFgmUoUmdQ8gdrf89T-67yESmfY64679_7jKezyA-BpVIpyBuV8vqDnzGDn4YXY6S8hkpv0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Fracturing+sand+plugging+risk+early+warning+method+based+on+deep+learning+and+double+logarithmic+curves&rft.inventor=WANG+LIN&rft.inventor=ZHU+NAN&rft.inventor=WEI+MIAN&rft.inventor=LIU+YIJIA&rft.inventor=HUANG+QI&rft.inventor=WANG+FANGXIANG&rft.inventor=GENG+TENG&rft.inventor=YANG+XIN&rft.inventor=DONG+BINGXIANG&rft.inventor=LI+NAN&rft.inventor=LIN+CHUNLAI&rft.inventor=DU+HUIMIN&rft.inventor=SHAO+JUNLONG&rft.date=2024-06-11&rft.externalDBID=A&rft.externalDocID=CN118171552A |