Remote sensing image automatic annotation method based on multi-model coupling evaluation

The invention discloses a remote sensing image automatic labeling method based on multi-model coupling evaluation, and the method comprises the following steps: S1, obtaining a remote sensing image data set, carrying out the manual fine labeling, and carrying out the counting of the number of labele...

Full description

Saved in:
Bibliographic Details
Main Authors RYU BYUNG-GI, ZHANG JUNSHAN, ZUO YULIN, REN MIXIN, TANG YUFENG, HAN YONG
Format Patent
LanguageChinese
English
Published 28.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The invention discloses a remote sensing image automatic labeling method based on multi-model coupling evaluation, and the method comprises the following steps: S1, obtaining a remote sensing image data set, carrying out the manual fine labeling, and carrying out the counting of the number of labeled categories; s2, setting a category number threshold value, and expanding the sample number for categories with the category number smaller than the threshold value; s3, training is carried out to obtain respective optimal model weight parameters, and a trained target detection network model is obtained; the optimal accuracy is determined through the evaluation indexes; s4, a to-be-marked data set is sent into the obtained optimal model for prediction, and a label file is generated; and S5, screening, grouping and evaluating the generated label files, and outputting an original image and final label information. According to the method, the number of samples can be expanded before modeling training of the automati
AbstractList The invention discloses a remote sensing image automatic labeling method based on multi-model coupling evaluation, and the method comprises the following steps: S1, obtaining a remote sensing image data set, carrying out the manual fine labeling, and carrying out the counting of the number of labeled categories; s2, setting a category number threshold value, and expanding the sample number for categories with the category number smaller than the threshold value; s3, training is carried out to obtain respective optimal model weight parameters, and a trained target detection network model is obtained; the optimal accuracy is determined through the evaluation indexes; s4, a to-be-marked data set is sent into the obtained optimal model for prediction, and a label file is generated; and S5, screening, grouping and evaluating the generated label files, and outputting an original image and final label information. According to the method, the number of samples can be expanded before modeling training of the automati
Author ZUO YULIN
REN MIXIN
RYU BYUNG-GI
ZHANG JUNSHAN
HAN YONG
TANG YUFENG
Author_xml – fullname: RYU BYUNG-GI
– fullname: ZHANG JUNSHAN
– fullname: ZUO YULIN
– fullname: REN MIXIN
– fullname: TANG YUFENG
– fullname: HAN YONG
BookMark eNqNi7sKwkAQRbfQwtc_jB8QMAiJKSUoVhZiYxXG5BoXdmcCu-v3a8QPsLrnwLlzMxEVzMztAq8RFCDBSk_Wcw_iFNVztC2xiMYPqZBHfGpHdw7oaPTkos28dnDUahrc-MeLXfr2SzN9sAtY_XZh1sfDtT5lGLRBGLiFIDb1Oc93m6osimq__ad5A27BPSM
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
DocumentTitleAlternate 一种基于多模型耦合评估的遥感图像自动标注方法
ExternalDocumentID CN118097669A
GroupedDBID EVB
ID FETCH-epo_espacenet_CN118097669A3
IEDL.DBID EVB
IngestDate Fri Aug 23 06:53:37 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_CN118097669A3
Notes Application Number: CN202410487399
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240528&DB=EPODOC&CC=CN&NR=118097669A
ParticipantIDs epo_espacenet_CN118097669A
PublicationCentury 2000
PublicationDate 20240528
PublicationDateYYYYMMDD 2024-05-28
PublicationDate_xml – month: 05
  year: 2024
  text: 20240528
  day: 28
PublicationDecade 2020
PublicationYear 2024
RelatedCompanies CHENGDU UNIVERSITY
RelatedCompanies_xml – name: CHENGDU UNIVERSITY
Score 3.6774824
Snippet The invention discloses a remote sensing image automatic labeling method based on multi-model coupling evaluation, and the method comprises the following...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTING
COUNTING
PHYSICS
Title Remote sensing image automatic annotation method based on multi-model coupling evaluation
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240528&DB=EPODOC&locale=&CC=CN&NR=118097669A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5qfd40WrQ-WEFyC8a8cwhiNw1FaFpKlXoqeWxrBZNiEgR_vbPb1HrRYzawbAZmv_kyM98A3Fi2mqhuzBQrVmPFYLauRCayFFNLMB6-izHi5hndfmj1nozHiTlpwNu6F0bohH4KcUT0qAT9vRT39XLzE8sXtZXFbbzApfw-GHu-XLNjhCdTc2S_43WHA39AZUo9GsrhyONKZ4i8lvuwBdsYRtuCtD13eFfK8jekBIewM8TdsvIIGl-vEuzT9eQ1Cfb6dcJbgl1RoZkUuFh7YXEMLyOGBmak4MXn2Zws3vFSIFFV5kJ_lURZlq8y7GQ1IJpwrEoJf-b1g4oYf0OSvOLtuHOyUfw-geugO6Y9BU87_THNlIabD9Nb0MzyjJ0CETpeWmohmYqMSLedmYZURTfSNFXTGXPPoP33Pu3_Xp7DATczz59rzgU0y4-KXSIsl_GVsOc3L1iSaQ
link.rule.ids 230,309,783,888,25577,76883
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4gPvCmqFF8rYnprbH0RTk0RrYQVCiEoMFT08eCmNgS28bEX-_sUsSLHrtNNttJZr_5OjPfAFybDSVUmgGTzUAJZJ01NNk3kKUYaojxcD3AiJtndPuu2X3SHybGpARvq14YoRP6KcQR0aNC9PdM3NeL9U8sR9RWpjfBHJeS287YdqSCHSM8GaolOS27PRw4AypRalNXckc2VzpD5DWbdxuwiSG2JajSc4t3pSx-Q0pnD7aGuFuc7UPp67UKFbqavFaFnX6R8K7CtqjQDFNcLLwwPYCXEUMDM5Ly4vN4RubveCkQP88Sob9K_DhOlhl2shwQTThWRYQ_8_pBWYy_IWGS83bcGVkrfh_CVac9pl0ZT-v9mMaj7vrDtCMox0nMjoEIHS81MpFM-bqvNaypilRF06MoUqIpa55A7e99av-9vIRKd9zveb179_EUdrnJeS5dtc6gnH3k7BwhOgsuhG2_ATWPlVk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Remote+sensing+image+automatic+annotation+method+based+on+multi-model+coupling+evaluation&rft.inventor=RYU+BYUNG-GI&rft.inventor=ZHANG+JUNSHAN&rft.inventor=ZUO+YULIN&rft.inventor=REN+MIXIN&rft.inventor=TANG+YUFENG&rft.inventor=HAN+YONG&rft.date=2024-05-28&rft.externalDBID=A&rft.externalDocID=CN118097669A