Termite identification method based on ResNet neural network
The invention provides a termite identification method based on a ResNet neural network. The method comprises the following steps: acquiring a termite image data set established by termite images of various termite types; performing image enhancement processing on the termite image data set to obtai...
Saved in:
Main Authors | , , , , , , , , , , , , , , |
---|---|
Format | Patent |
Language | Chinese English |
Published |
12.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The invention provides a termite identification method based on a ResNet neural network. The method comprises the following steps: acquiring a termite image data set established by termite images of various termite types; performing image enhancement processing on the termite image data set to obtain an enhanced target termite image data set; classifying the target termite image data set into a training set, a verification set and a test set according to a preset proportion in a manner that the numbers of termite images of various termite types are equal; an initial Resnet neural network model is built; inputting a training set and a verification set in the target termite image data set into a Resnet neural network model for training to obtain a network model for identifying termite types; and inputting the test set in the target termite image data set into the network model, and outputting various termite types of the test set, so that the ResNet neural network model is adopted to detect the termite types, a |
---|---|
AbstractList | The invention provides a termite identification method based on a ResNet neural network. The method comprises the following steps: acquiring a termite image data set established by termite images of various termite types; performing image enhancement processing on the termite image data set to obtain an enhanced target termite image data set; classifying the target termite image data set into a training set, a verification set and a test set according to a preset proportion in a manner that the numbers of termite images of various termite types are equal; an initial Resnet neural network model is built; inputting a training set and a verification set in the target termite image data set into a Resnet neural network model for training to obtain a network model for identifying termite types; and inputting the test set in the target termite image data set into the network model, and outputting various termite types of the test set, so that the ResNet neural network model is adopted to detect the termite types, a |
Author | TANG XIAOSONG SONG BOXU YIN CHUAN GUO JINMIN LUO RONGFU ZHU DIE ZHA RONGRUI LUO HANG SHI LEI MA YUNHUA ZHANG ZHIWEI BAO QIUMEI QIU XIAODI FAN MU MA JUN |
Author_xml | – fullname: BAO QIUMEI – fullname: GUO JINMIN – fullname: TANG XIAOSONG – fullname: MA JUN – fullname: SHI LEI – fullname: ZHA RONGRUI – fullname: QIU XIAODI – fullname: FAN MU – fullname: ZHU DIE – fullname: ZHANG ZHIWEI – fullname: LUO RONGFU – fullname: LUO HANG – fullname: YIN CHUAN – fullname: SONG BOXU – fullname: MA YUNHUA |
BookMark | eNrjYmDJy89L5WSwCUktys0sSVXITEnNK8lMy0xOLMnMz1PITS3JyE9RSEosTk1RAPKDUov9UksU8lJLixJzgFRJeX5RNg8Da1piTnEqL5TmZlB0cw1x9tBNLciPTy0uSExOBaqMd_YzNDS3MDc3MLN0NCZGDQAFuDHA |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | 基于ResNet神经网络的白蚁识别方法 |
ExternalDocumentID | CN117877069A |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_CN117877069A3 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 26 04:34:54 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | Chinese English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_CN117877069A3 |
Notes | Application Number: CN202410020841 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240412&DB=EPODOC&CC=CN&NR=117877069A |
ParticipantIDs | epo_espacenet_CN117877069A |
PublicationCentury | 2000 |
PublicationDate | 20240412 |
PublicationDateYYYYMMDD | 2024-04-12 |
PublicationDate_xml | – month: 04 year: 2024 text: 20240412 day: 12 |
PublicationDecade | 2020 |
PublicationYear | 2024 |
RelatedCompanies | HUANENG LANCANG RIVER HYDROPOWER CO., LTD SHANGHAI WANNING PEST CONTROL TECHNOLOGY CO., LTD |
RelatedCompanies_xml | – name: SHANGHAI WANNING PEST CONTROL TECHNOLOGY CO., LTD – name: HUANENG LANCANG RIVER HYDROPOWER CO., LTD |
Score | 3.6685734 |
Snippet | The invention provides a termite identification method based on a ResNet neural network. The method comprises the following steps: acquiring a termite image... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
Title | Termite identification method based on ResNet neural network |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240412&DB=EPODOC&locale=&CC=CN&NR=117877069A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_m_HzTquj8oIL0rdiuXytYxKUrQ7Abo8reRppmbCLdsBHBv95L7Jwv-hSSQLgcuVyS-90vANfM9Z08pG2TTYvcdKlvySAhM22H-w6eOCyPK7bP1O8_uQ9jb9yAl1UujOIJ_VDkiGhRDO1dqP16uX7EihW2srrJ59i0uEuyKDbq2zG6J9duG3E36g0H8YAYhEQkNdJRZNu4MgPLD-83YBOP0YG6tD13ZVbK8rdLSfZha4ijleIAGp8zDXbJ6uc1DXYe64C3BtsKockqbKytsDqE20wiWATX50WN9VES69-_QevSMRU61ke8SrnQJWUlfcVCAb6P4CrpZaRvokCTn9lPSLqW3TmGZrko-QnoU8oCnsugl0PdTuFTRjth4VHUAA_RrE6h9fc4rf86z2BPatJUhIbn0BRv7_wCPa_IL5XKvgC_2Yfp |
link.rule.ids | 230,309,783,888,25577,76883 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_m_JhvWhWdXxGkb8V1_dgKFnHpxtStG6PK3kqaZjiRbdiK4F_vJXbOF30KSSBcjlwuyf3uF4BLbrtW4rG6wSdpYtjMrckgITdMS7gWnjhqjlBsn6HbfbTvx864BC_LXBjFE_qhyBHRojjae67268XqEStQ2MrsKpli0_ymE_mBXtyO0T3ZZl0PWn57OAgGVKfUp6EejnzTxJXZqLne7Rqs4xG7qa5KTy2ZlbL47VI6O7AxxNFm-S6UPp81qNDlz2sabPWLgLcGmwqhyTNsLKww24PrSCJYckGmaYH1URKT79-giXRMKcH6SGShyImkrGSvWCjA9z5cdNoR7RooUPwz-5iGK9mtAyjP5jNxCGTCeEMkMuhlMbuZuoyzppc6DDUgPDSrI6j-PU71v85zqHSjfi_u3YUPx7AttWoocsMTKOdv7-IUvXCenCn1fQFHworZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Termite+identification+method+based+on+ResNet+neural+network&rft.inventor=BAO+QIUMEI&rft.inventor=GUO+JINMIN&rft.inventor=TANG+XIAOSONG&rft.inventor=MA+JUN&rft.inventor=SHI+LEI&rft.inventor=ZHA+RONGRUI&rft.inventor=QIU+XIAODI&rft.inventor=FAN+MU&rft.inventor=ZHU+DIE&rft.inventor=ZHANG+ZHIWEI&rft.inventor=LUO+RONGFU&rft.inventor=LUO+HANG&rft.inventor=YIN+CHUAN&rft.inventor=SONG+BOXU&rft.inventor=MA+YUNHUA&rft.date=2024-04-12&rft.externalDBID=A&rft.externalDocID=CN117877069A |