Termite identification method based on ResNet neural network

The invention provides a termite identification method based on a ResNet neural network. The method comprises the following steps: acquiring a termite image data set established by termite images of various termite types; performing image enhancement processing on the termite image data set to obtai...

Full description

Saved in:
Bibliographic Details
Main Authors BAO QIUMEI, GUO JINMIN, TANG XIAOSONG, MA JUN, SHI LEI, ZHA RONGRUI, QIU XIAODI, FAN MU, ZHU DIE, ZHANG ZHIWEI, LUO RONGFU, LUO HANG, YIN CHUAN, SONG BOXU, MA YUNHUA
Format Patent
LanguageChinese
English
Published 12.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The invention provides a termite identification method based on a ResNet neural network. The method comprises the following steps: acquiring a termite image data set established by termite images of various termite types; performing image enhancement processing on the termite image data set to obtain an enhanced target termite image data set; classifying the target termite image data set into a training set, a verification set and a test set according to a preset proportion in a manner that the numbers of termite images of various termite types are equal; an initial Resnet neural network model is built; inputting a training set and a verification set in the target termite image data set into a Resnet neural network model for training to obtain a network model for identifying termite types; and inputting the test set in the target termite image data set into the network model, and outputting various termite types of the test set, so that the ResNet neural network model is adopted to detect the termite types, a
AbstractList The invention provides a termite identification method based on a ResNet neural network. The method comprises the following steps: acquiring a termite image data set established by termite images of various termite types; performing image enhancement processing on the termite image data set to obtain an enhanced target termite image data set; classifying the target termite image data set into a training set, a verification set and a test set according to a preset proportion in a manner that the numbers of termite images of various termite types are equal; an initial Resnet neural network model is built; inputting a training set and a verification set in the target termite image data set into a Resnet neural network model for training to obtain a network model for identifying termite types; and inputting the test set in the target termite image data set into the network model, and outputting various termite types of the test set, so that the ResNet neural network model is adopted to detect the termite types, a
Author TANG XIAOSONG
SONG BOXU
YIN CHUAN
GUO JINMIN
LUO RONGFU
ZHU DIE
ZHA RONGRUI
LUO HANG
SHI LEI
MA YUNHUA
ZHANG ZHIWEI
BAO QIUMEI
QIU XIAODI
FAN MU
MA JUN
Author_xml – fullname: BAO QIUMEI
– fullname: GUO JINMIN
– fullname: TANG XIAOSONG
– fullname: MA JUN
– fullname: SHI LEI
– fullname: ZHA RONGRUI
– fullname: QIU XIAODI
– fullname: FAN MU
– fullname: ZHU DIE
– fullname: ZHANG ZHIWEI
– fullname: LUO RONGFU
– fullname: LUO HANG
– fullname: YIN CHUAN
– fullname: SONG BOXU
– fullname: MA YUNHUA
BookMark eNrjYmDJy89L5WSwCUktys0sSVXITEnNK8lMy0xOLMnMz1PITS3JyE9RSEosTk1RAPKDUov9UksU8lJLixJzgFRJeX5RNg8Da1piTnEqL5TmZlB0cw1x9tBNLciPTy0uSExOBaqMd_YzNDS3MDc3MLN0NCZGDQAFuDHA
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
DocumentTitleAlternate 基于ResNet神经网络的白蚁识别方法
ExternalDocumentID CN117877069A
GroupedDBID EVB
ID FETCH-epo_espacenet_CN117877069A3
IEDL.DBID EVB
IngestDate Fri Jul 26 04:34:54 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_CN117877069A3
Notes Application Number: CN202410020841
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240412&DB=EPODOC&CC=CN&NR=117877069A
ParticipantIDs epo_espacenet_CN117877069A
PublicationCentury 2000
PublicationDate 20240412
PublicationDateYYYYMMDD 2024-04-12
PublicationDate_xml – month: 04
  year: 2024
  text: 20240412
  day: 12
PublicationDecade 2020
PublicationYear 2024
RelatedCompanies HUANENG LANCANG RIVER HYDROPOWER CO., LTD
SHANGHAI WANNING PEST CONTROL TECHNOLOGY CO., LTD
RelatedCompanies_xml – name: SHANGHAI WANNING PEST CONTROL TECHNOLOGY CO., LTD
– name: HUANENG LANCANG RIVER HYDROPOWER CO., LTD
Score 3.6685734
Snippet The invention provides a termite identification method based on a ResNet neural network. The method comprises the following steps: acquiring a termite image...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
Title Termite identification method based on ResNet neural network
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240412&DB=EPODOC&locale=&CC=CN&NR=117877069A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_m_HzTquj8oIL0rdiuXytYxKUrQ7Abo8reRppmbCLdsBHBv95L7Jwv-hSSQLgcuVyS-90vANfM9Z08pG2TTYvcdKlvySAhM22H-w6eOCyPK7bP1O8_uQ9jb9yAl1UujOIJ_VDkiGhRDO1dqP16uX7EihW2srrJ59i0uEuyKDbq2zG6J9duG3E36g0H8YAYhEQkNdJRZNu4MgPLD-83YBOP0YG6tD13ZVbK8rdLSfZha4ijleIAGp8zDXbJ6uc1DXYe64C3BtsKockqbKytsDqE20wiWATX50WN9VES69-_QevSMRU61ke8SrnQJWUlfcVCAb6P4CrpZaRvokCTn9lPSLqW3TmGZrko-QnoU8oCnsugl0PdTuFTRjth4VHUAA_RrE6h9fc4rf86z2BPatJUhIbn0BRv7_wCPa_IL5XKvgC_2Yfp
link.rule.ids 230,309,783,888,25577,76883
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_m_JhvWhWdXxGkb8V1_dgKFnHpxtStG6PK3kqaZjiRbdiK4F_vJXbOF30KSSBcjlwuyf3uF4BLbrtW4rG6wSdpYtjMrckgITdMS7gWnjhqjlBsn6HbfbTvx864BC_LXBjFE_qhyBHRojjae67268XqEStQ2MrsKpli0_ymE_mBXtyO0T3ZZl0PWn57OAgGVKfUp6EejnzTxJXZqLne7Rqs4xG7qa5KTy2ZlbL47VI6O7AxxNFm-S6UPp81qNDlz2sabPWLgLcGmwqhyTNsLKww24PrSCJYckGmaYH1URKT79-giXRMKcH6SGShyImkrGSvWCjA9z5cdNoR7RooUPwz-5iGK9mtAyjP5jNxCGTCeEMkMuhlMbuZuoyzppc6DDUgPDSrI6j-PU71v85zqHSjfi_u3YUPx7AttWoocsMTKOdv7-IUvXCenCn1fQFHworZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Termite+identification+method+based+on+ResNet+neural+network&rft.inventor=BAO+QIUMEI&rft.inventor=GUO+JINMIN&rft.inventor=TANG+XIAOSONG&rft.inventor=MA+JUN&rft.inventor=SHI+LEI&rft.inventor=ZHA+RONGRUI&rft.inventor=QIU+XIAODI&rft.inventor=FAN+MU&rft.inventor=ZHU+DIE&rft.inventor=ZHANG+ZHIWEI&rft.inventor=LUO+RONGFU&rft.inventor=LUO+HANG&rft.inventor=YIN+CHUAN&rft.inventor=SONG+BOXU&rft.inventor=MA+YUNHUA&rft.date=2024-04-12&rft.externalDBID=A&rft.externalDocID=CN117877069A