Knowledge graph fusion method based on integrated semantic rule and representation learning

The invention discloses a knowledge graph fusion method based on an integrated semantic rule and representation learning, and mainly solves the problems that in the prior art, equivalent triads cannot be effectively fused under the condition of few sample data, and the fusion generalization is low....

Full description

Saved in:
Bibliographic Details
Main Authors CHU TAO, ZHU YUHU, WANG CHAOJUN, ZHANG JINGANG, ZHANG XINGXING, SUN LIQIANG, CHENG PUQIANG, FENG LI, HAN BING, WANG QIBIN
Format Patent
LanguageChinese
English
Published 08.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The invention discloses a knowledge graph fusion method based on an integrated semantic rule and representation learning, and mainly solves the problems that in the prior art, equivalent triads cannot be effectively fused under the condition of few sample data, and the fusion generalization is low. According to the implementation scheme, firstly, a knowledge fusion model based on representation learning is trained, then primary knowledge fusion is carried out through a semantic rule, and a fusion counter example and a fusion positive example after primary fusion are obtained; inputting the fusion counter example into a representation-based learning knowledge fusion model for secondary fusion to obtain a fusion counter example and a fusion positive example after secondary fusion; and finally, integrating positive examples in the two fusion results to complete the fusion alignment of the equivalent triad. According to the method, the accuracy of equivalent triple fusion can be improved under the condition of fe
AbstractList The invention discloses a knowledge graph fusion method based on an integrated semantic rule and representation learning, and mainly solves the problems that in the prior art, equivalent triads cannot be effectively fused under the condition of few sample data, and the fusion generalization is low. According to the implementation scheme, firstly, a knowledge fusion model based on representation learning is trained, then primary knowledge fusion is carried out through a semantic rule, and a fusion counter example and a fusion positive example after primary fusion are obtained; inputting the fusion counter example into a representation-based learning knowledge fusion model for secondary fusion to obtain a fusion counter example and a fusion positive example after secondary fusion; and finally, integrating positive examples in the two fusion results to complete the fusion alignment of the equivalent triad. According to the method, the accuracy of equivalent triple fusion can be improved under the condition of fe
Author ZHU YUHU
ZHANG XINGXING
ZHANG JINGANG
CHENG PUQIANG
WANG CHAOJUN
SUN LIQIANG
FENG LI
WANG QIBIN
HAN BING
CHU TAO
Author_xml – fullname: CHU TAO
– fullname: ZHU YUHU
– fullname: WANG CHAOJUN
– fullname: ZHANG JINGANG
– fullname: ZHANG XINGXING
– fullname: SUN LIQIANG
– fullname: CHENG PUQIANG
– fullname: FENG LI
– fullname: HAN BING
– fullname: WANG QIBIN
BookMark eNqNi00KwjAUBrPQhX93eB7ARVFaXEpRBMGVOxfl2XxNA-lLSFK8vhU8gKthYGapZuIFC_W8iX87aAMykUNP3ZisFxqQe6_pxQmaJreSMQV5soSBJduW4uhALJoiQkSCZM7f14GjWDFrNe_YJWx-XKnt5fyorzsE3yAFbiHITX0viqosj1VxOO3_aT7mZz3A
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
DocumentTitleAlternate 基于集成语义规则和表示学习的知识图谱融合方法
ExternalDocumentID CN117669714A
GroupedDBID EVB
ID FETCH-epo_espacenet_CN117669714A3
IEDL.DBID EVB
IngestDate Fri Aug 02 09:01:36 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_CN117669714A3
Notes Application Number: CN202311488126
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240308&DB=EPODOC&CC=CN&NR=117669714A
ParticipantIDs epo_espacenet_CN117669714A
PublicationCentury 2000
PublicationDate 20240308
PublicationDateYYYYMMDD 2024-03-08
PublicationDate_xml – month: 03
  year: 2024
  text: 20240308
  day: 08
PublicationDecade 2020
PublicationYear 2024
RelatedCompanies XIDIAN UNIVERSITY
RelatedCompanies_xml – name: XIDIAN UNIVERSITY
Score 3.6613095
Snippet The invention discloses a knowledge graph fusion method based on an integrated semantic rule and representation learning, and mainly solves the problems that...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
Title Knowledge graph fusion method based on integrated semantic rule and representation learning
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240308&DB=EPODOC&locale=&CC=CN&NR=117669714A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_m_HzT6tD5QQTpW7Fbu3Z9KOLSlqGsGzJl4MNIv3Si3VhbBP96L7HdfNHHXCAkP7hc7nL3O4Arrc3QLhjoqQaqqeh6O1GsSE8UTQ0Yvr47ZigY-Aa-0X_U7yadSQ3eqloYwRP6KcgRUaNC1Pdc3NeLdRDLEbmV2XUwQ9H8xhvbjlx6x5xcTu3KTs92R0NnSGVKberL_oPd4kSIltnSbzdgE5_RJk__cp96vCpl8dukePuwNcLV0vwAal-vEuzSqvOaBDuD8sNbgm2RoRlmKCy1MDuE5_sqEEYE3zRJCh7zIj_doAk3TBHB8YoKIiJZ_IEQzkKyLN5jwtKICDbLqvIoJWX3iJcjuPTcMe0ruN_pCpwp9ddH0xpQT-dpfAwE4Q-SuNU2mKHpFlMZi7UosHhfXq2rGtEJNP9ep_nf5CnscaBFHlb3DOr5sojP0TDnwYVA9Bv-U5LY
link.rule.ids 230,309,783,888,25578,76884
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ1LT8JAEMcniA-8KUoUX2tiemtsaSntoTGyhaBAIQYNiQeyfSlGC6ElJn56Z9cWvOix22TT_SfT2Z2d-Q3AlVZj6BcMPKl6SkPW9VokW4EeyZriMdx91xu-IPD1XaPzqN-P6-MCvOW1MIIT-ingiGhRPtp7Kv7X83UQyxG5lcm1N8Wh2U17ZDtSdjrmcDnFlJym3RoOnAGVKLWpK7kPtspBiFZD1W83YBO32Cbn7LeemrwqZf7bpbT3YGuIs8XpPhS-XstQonnntTLs9LML7zJsiwxNP8HBzAqTA3ju5oEwInjTJFrymBf56QZNuGMKCD6vUBABScIPlHDqk8XyPSQsDoigWeaVRzHJuke8HMJluzWiHRm_d7ISZ0Ld9dK0ChTjWRweAUH5vShUawYzNN1iCmOhFngW78urmYoRHEP173mq_728gFJn1O9Nendu9wR2uegiJ8s8hWK6WIZn6KRT71yo-w0KCZXI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Knowledge+graph+fusion+method+based+on+integrated+semantic+rule+and+representation+learning&rft.inventor=CHU+TAO&rft.inventor=ZHU+YUHU&rft.inventor=WANG+CHAOJUN&rft.inventor=ZHANG+JINGANG&rft.inventor=ZHANG+XINGXING&rft.inventor=SUN+LIQIANG&rft.inventor=CHENG+PUQIANG&rft.inventor=FENG+LI&rft.inventor=HAN+BING&rft.inventor=WANG+QIBIN&rft.date=2024-03-08&rft.externalDBID=A&rft.externalDocID=CN117669714A