Knowledge graph fusion method based on integrated semantic rule and representation learning
The invention discloses a knowledge graph fusion method based on an integrated semantic rule and representation learning, and mainly solves the problems that in the prior art, equivalent triads cannot be effectively fused under the condition of few sample data, and the fusion generalization is low....
Saved in:
Main Authors | , , , , , , , , , |
---|---|
Format | Patent |
Language | Chinese English |
Published |
08.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The invention discloses a knowledge graph fusion method based on an integrated semantic rule and representation learning, and mainly solves the problems that in the prior art, equivalent triads cannot be effectively fused under the condition of few sample data, and the fusion generalization is low. According to the implementation scheme, firstly, a knowledge fusion model based on representation learning is trained, then primary knowledge fusion is carried out through a semantic rule, and a fusion counter example and a fusion positive example after primary fusion are obtained; inputting the fusion counter example into a representation-based learning knowledge fusion model for secondary fusion to obtain a fusion counter example and a fusion positive example after secondary fusion; and finally, integrating positive examples in the two fusion results to complete the fusion alignment of the equivalent triad. According to the method, the accuracy of equivalent triple fusion can be improved under the condition of fe |
---|---|
AbstractList | The invention discloses a knowledge graph fusion method based on an integrated semantic rule and representation learning, and mainly solves the problems that in the prior art, equivalent triads cannot be effectively fused under the condition of few sample data, and the fusion generalization is low. According to the implementation scheme, firstly, a knowledge fusion model based on representation learning is trained, then primary knowledge fusion is carried out through a semantic rule, and a fusion counter example and a fusion positive example after primary fusion are obtained; inputting the fusion counter example into a representation-based learning knowledge fusion model for secondary fusion to obtain a fusion counter example and a fusion positive example after secondary fusion; and finally, integrating positive examples in the two fusion results to complete the fusion alignment of the equivalent triad. According to the method, the accuracy of equivalent triple fusion can be improved under the condition of fe |
Author | ZHU YUHU ZHANG XINGXING ZHANG JINGANG CHENG PUQIANG WANG CHAOJUN SUN LIQIANG FENG LI WANG QIBIN HAN BING CHU TAO |
Author_xml | – fullname: CHU TAO – fullname: ZHU YUHU – fullname: WANG CHAOJUN – fullname: ZHANG JINGANG – fullname: ZHANG XINGXING – fullname: SUN LIQIANG – fullname: CHENG PUQIANG – fullname: FENG LI – fullname: HAN BING – fullname: WANG QIBIN |
BookMark | eNqNi00KwjAUBrPQhX93eB7ARVFaXEpRBMGVOxfl2XxNA-lLSFK8vhU8gKthYGapZuIFC_W8iX87aAMykUNP3ZisFxqQe6_pxQmaJreSMQV5soSBJduW4uhALJoiQkSCZM7f14GjWDFrNe_YJWx-XKnt5fyorzsE3yAFbiHITX0viqosj1VxOO3_aT7mZz3A |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | 基于集成语义规则和表示学习的知识图谱融合方法 |
ExternalDocumentID | CN117669714A |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_CN117669714A3 |
IEDL.DBID | EVB |
IngestDate | Fri Aug 02 09:01:36 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | Chinese English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_CN117669714A3 |
Notes | Application Number: CN202311488126 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240308&DB=EPODOC&CC=CN&NR=117669714A |
ParticipantIDs | epo_espacenet_CN117669714A |
PublicationCentury | 2000 |
PublicationDate | 20240308 |
PublicationDateYYYYMMDD | 2024-03-08 |
PublicationDate_xml | – month: 03 year: 2024 text: 20240308 day: 08 |
PublicationDecade | 2020 |
PublicationYear | 2024 |
RelatedCompanies | XIDIAN UNIVERSITY |
RelatedCompanies_xml | – name: XIDIAN UNIVERSITY |
Score | 3.6613095 |
Snippet | The invention discloses a knowledge graph fusion method based on an integrated semantic rule and representation learning, and mainly solves the problems that... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
Title | Knowledge graph fusion method based on integrated semantic rule and representation learning |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240308&DB=EPODOC&locale=&CC=CN&NR=117669714A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_m_HzT6tD5QQTpW7Fbu3Z9KOLSlqGsGzJl4MNIv3Si3VhbBP96L7HdfNHHXCAkP7hc7nL3O4Arrc3QLhjoqQaqqeh6O1GsSE8UTQ0Yvr47ZigY-Aa-0X_U7yadSQ3eqloYwRP6KcgRUaNC1Pdc3NeLdRDLEbmV2XUwQ9H8xhvbjlx6x5xcTu3KTs92R0NnSGVKberL_oPd4kSIltnSbzdgE5_RJk__cp96vCpl8dukePuwNcLV0vwAal-vEuzSqvOaBDuD8sNbgm2RoRlmKCy1MDuE5_sqEEYE3zRJCh7zIj_doAk3TBHB8YoKIiJZ_IEQzkKyLN5jwtKICDbLqvIoJWX3iJcjuPTcMe0ruN_pCpwp9ddH0xpQT-dpfAwE4Q-SuNU2mKHpFlMZi7UosHhfXq2rGtEJNP9ep_nf5CnscaBFHlb3DOr5sojP0TDnwYVA9Bv-U5LY |
link.rule.ids | 230,309,783,888,25578,76884 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ1LT8JAEMcniA-8KUoUX2tiemtsaSntoTGyhaBAIQYNiQeyfSlGC6ElJn56Z9cWvOix22TT_SfT2Z2d-Q3AlVZj6BcMPKl6SkPW9VokW4EeyZriMdx91xu-IPD1XaPzqN-P6-MCvOW1MIIT-ingiGhRPtp7Kv7X83UQyxG5lcm1N8Wh2U17ZDtSdjrmcDnFlJym3RoOnAGVKLWpK7kPtspBiFZD1W83YBO32Cbn7LeemrwqZf7bpbT3YGuIs8XpPhS-XstQonnntTLs9LML7zJsiwxNP8HBzAqTA3ju5oEwInjTJFrymBf56QZNuGMKCD6vUBABScIPlHDqk8XyPSQsDoigWeaVRzHJuke8HMJluzWiHRm_d7ISZ0Ld9dK0ChTjWRweAUH5vShUawYzNN1iCmOhFngW78urmYoRHEP173mq_728gFJn1O9Nendu9wR2uegiJ8s8hWK6WIZn6KRT71yo-w0KCZXI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Knowledge+graph+fusion+method+based+on+integrated+semantic+rule+and+representation+learning&rft.inventor=CHU+TAO&rft.inventor=ZHU+YUHU&rft.inventor=WANG+CHAOJUN&rft.inventor=ZHANG+JINGANG&rft.inventor=ZHANG+XINGXING&rft.inventor=SUN+LIQIANG&rft.inventor=CHENG+PUQIANG&rft.inventor=FENG+LI&rft.inventor=HAN+BING&rft.inventor=WANG+QIBIN&rft.date=2024-03-08&rft.externalDBID=A&rft.externalDocID=CN117669714A |