Photovoltaic power generation prediction method based on clustering algorithm fusion

The invention discloses a clustering algorithm fusion-based photovoltaic power generation prediction method. The method comprises the steps of obtaining meteorological data of a photovoltaic power station; classifying the meteorological data through a clustering algorithm, and inputting the classifi...

Full description

Saved in:
Bibliographic Details
Main Authors CHENG JINRUI, HUANG SHUAI, WANG XINGHU
Format Patent
LanguageChinese
English
Published 01.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The invention discloses a clustering algorithm fusion-based photovoltaic power generation prediction method. The method comprises the steps of obtaining meteorological data of a photovoltaic power station; classifying the meteorological data through a clustering algorithm, and inputting the classified meteorological data into the BP photovoltaic prediction model to output a photovoltaic prediction result; the BP photovoltaic prediction model comprises a plurality of photovoltaic meteorological networks, and the training process of the BP photovoltaic prediction model comprises the following steps: S1, constructing a training set; s2, classifying historical data sets in the training set through a K-means clustering algorithm to obtain meteorological data sets of different meteorological types; s3, adopting a Pearson similarity analysis method to select historical data from the meteorological data set of the meteorological type # imgabs0 # as an input vector of the photovoltaic meteorological network correspond
AbstractList The invention discloses a clustering algorithm fusion-based photovoltaic power generation prediction method. The method comprises the steps of obtaining meteorological data of a photovoltaic power station; classifying the meteorological data through a clustering algorithm, and inputting the classified meteorological data into the BP photovoltaic prediction model to output a photovoltaic prediction result; the BP photovoltaic prediction model comprises a plurality of photovoltaic meteorological networks, and the training process of the BP photovoltaic prediction model comprises the following steps: S1, constructing a training set; s2, classifying historical data sets in the training set through a K-means clustering algorithm to obtain meteorological data sets of different meteorological types; s3, adopting a Pearson similarity analysis method to select historical data from the meteorological data set of the meteorological type # imgabs0 # as an input vector of the photovoltaic meteorological network correspond
Author WANG XINGHU
HUANG SHUAI
CHENG JINRUI
Author_xml – fullname: CHENG JINRUI
– fullname: HUANG SHUAI
– fullname: WANG XINGHU
BookMark eNqNjU0KwjAQRrPQhX93GA_gohbULqUorsRF9yUm0ySQZkIy1esbxAO4-t6DB99SzAIFXIjuYYnpRZ6lUxDpjQkMBkySHQWICbVTXxyRLWl4yowaiis_ZcbkggHpDSXHdoRhyqVdi_kgfcbNb1die7107W2HkXrMUarywH17r6rjoT41--Zc_9N8AGAUO7M
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
DocumentTitleAlternate 一种基于聚类算法融合的光伏发电预测方法
ExternalDocumentID CN117638929A
GroupedDBID EVB
ID FETCH-epo_espacenet_CN117638929A3
IEDL.DBID EVB
IngestDate Fri Aug 02 08:59:27 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_CN117638929A3
Notes Application Number: CN202410109711
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240301&DB=EPODOC&CC=CN&NR=117638929A
ParticipantIDs epo_espacenet_CN117638929A
PublicationCentury 2000
PublicationDate 20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 20240301
  day: 01
PublicationDecade 2020
PublicationYear 2024
RelatedCompanies HEFEI COMPREHENSIVE NATIONAL ARTIFICIAL INTELLIGENCE RESEARCH INSTITUTE (ANHUI ARTIFICIAL INTELLIGENCE LABORATORY)
RelatedCompanies_xml – name: HEFEI COMPREHENSIVE NATIONAL ARTIFICIAL INTELLIGENCE RESEARCH INSTITUTE (ANHUI ARTIFICIAL INTELLIGENCE LABORATORY)
Score 3.6591742
Snippet The invention discloses a clustering algorithm fusion-based photovoltaic power generation prediction method. The method comprises the steps of obtaining...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
GENERATION
PHYSICS
SYSTEMS FOR STORING ELECTRIC ENERGY
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
Title Photovoltaic power generation prediction method based on clustering algorithm fusion
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240301&DB=EPODOC&locale=&CC=CN&NR=117638929A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8gfr4pahQ_UhPD2yKDsmUPi5GOhZgwiEHDG6GlYxjcljFi4l_vtQzxRd_6kTW3S66_u_b6O4B7qx7WuekIA33RpkHR5zA4tzBwlVJQyhuh1GQ6vcDqvtLnUWtUgvfNWxjNE_qpyRHRogTae67363R7iOXp3MrlA5_jUPLoD12vVkTHilwOY2Ov7XYGfa_Paoy5LKgFL65p2gqbG87TDuyiG20ra-i8tdWrlPQ3pPjHsDfA1eL8BEpfUQUO2abyWgUOesWFdwX2dYamWOJgYYXLUxgOoiRPcF9BCQVJVZ0zMtP00Upwkmbqc91c14cmCqqmBPtisVLECAhXZLKYJdk8jz5IuFInZmdw53eGrGugoOMfrYxZsP2n5jmU4ySWF0BaE9vGaBnjIMeifGI5VApOOZdTO8Qp6xKqf69T_W_yCo6UhtcJWNdQzrOVvEFEzvmtVuU3YK-SCg
link.rule.ids 230,309,783,888,25576,76876
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8gfuCbokbxqyaGt0U-ypY9LEY6CCoMYqbhjdDSAQbZwraY-Nd7LSC-6Fs_suZ2yfV3115_B3BrloISL9vCQF-0alD0OQzOTQxcpRSU8kogNZlOxzNbr_SpX-tn4H39FkbzhH5qckS0KIH2nuj9OtocYrk6tzK-41McCu-bvuMWV9GxIpfD2NitO41e1-2yImMO84rei1MuWwqbK_bDFmyji20pa2i81dWrlOg3pDQPYKeHq82TQ8h8TfKQY-vKa3nY66wuvPOwqzM0RYyDKyuMj8DvTcIkxH0FJRQkUnXOyFjTRyvBSbRQn-vmsj40UVA1ItgXs1QRIyBckeFsHC6myeSDBKk6MTuGm2bDZy0DBR38aGXAvM0_VU8gOw_n8hRIbWhZGC1jHGSblA9Nm0rBKedyZAU4ZZ5B4e91Cv9NXkOu5Xfag_aj93wO-0rby2SsC8gmi1ReIjon_Eqr9Rtm8ZT9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Photovoltaic+power+generation+prediction+method+based+on+clustering+algorithm+fusion&rft.inventor=CHENG+JINRUI&rft.inventor=HUANG+SHUAI&rft.inventor=WANG+XINGHU&rft.date=2024-03-01&rft.externalDBID=A&rft.externalDocID=CN117638929A