Photovoltaic power generation prediction method based on clustering algorithm fusion
The invention discloses a clustering algorithm fusion-based photovoltaic power generation prediction method. The method comprises the steps of obtaining meteorological data of a photovoltaic power station; classifying the meteorological data through a clustering algorithm, and inputting the classifi...
Saved in:
Main Authors | , , |
---|---|
Format | Patent |
Language | Chinese English |
Published |
01.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The invention discloses a clustering algorithm fusion-based photovoltaic power generation prediction method. The method comprises the steps of obtaining meteorological data of a photovoltaic power station; classifying the meteorological data through a clustering algorithm, and inputting the classified meteorological data into the BP photovoltaic prediction model to output a photovoltaic prediction result; the BP photovoltaic prediction model comprises a plurality of photovoltaic meteorological networks, and the training process of the BP photovoltaic prediction model comprises the following steps: S1, constructing a training set; s2, classifying historical data sets in the training set through a K-means clustering algorithm to obtain meteorological data sets of different meteorological types; s3, adopting a Pearson similarity analysis method to select historical data from the meteorological data set of the meteorological type # imgabs0 # as an input vector of the photovoltaic meteorological network correspond |
---|---|
AbstractList | The invention discloses a clustering algorithm fusion-based photovoltaic power generation prediction method. The method comprises the steps of obtaining meteorological data of a photovoltaic power station; classifying the meteorological data through a clustering algorithm, and inputting the classified meteorological data into the BP photovoltaic prediction model to output a photovoltaic prediction result; the BP photovoltaic prediction model comprises a plurality of photovoltaic meteorological networks, and the training process of the BP photovoltaic prediction model comprises the following steps: S1, constructing a training set; s2, classifying historical data sets in the training set through a K-means clustering algorithm to obtain meteorological data sets of different meteorological types; s3, adopting a Pearson similarity analysis method to select historical data from the meteorological data set of the meteorological type # imgabs0 # as an input vector of the photovoltaic meteorological network correspond |
Author | WANG XINGHU HUANG SHUAI CHENG JINRUI |
Author_xml | – fullname: CHENG JINRUI – fullname: HUANG SHUAI – fullname: WANG XINGHU |
BookMark | eNqNjU0KwjAQRrPQhX93GA_gohbULqUorsRF9yUm0ySQZkIy1esbxAO4-t6DB99SzAIFXIjuYYnpRZ6lUxDpjQkMBkySHQWICbVTXxyRLWl4yowaiis_ZcbkggHpDSXHdoRhyqVdi_kgfcbNb1die7107W2HkXrMUarywH17r6rjoT41--Zc_9N8AGAUO7M |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | 一种基于聚类算法融合的光伏发电预测方法 |
ExternalDocumentID | CN117638929A |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_CN117638929A3 |
IEDL.DBID | EVB |
IngestDate | Fri Aug 02 08:59:27 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | Chinese English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_CN117638929A3 |
Notes | Application Number: CN202410109711 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240301&DB=EPODOC&CC=CN&NR=117638929A |
ParticipantIDs | epo_espacenet_CN117638929A |
PublicationCentury | 2000 |
PublicationDate | 20240301 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 20240301 day: 01 |
PublicationDecade | 2020 |
PublicationYear | 2024 |
RelatedCompanies | HEFEI COMPREHENSIVE NATIONAL ARTIFICIAL INTELLIGENCE RESEARCH INSTITUTE (ANHUI ARTIFICIAL INTELLIGENCE LABORATORY) |
RelatedCompanies_xml | – name: HEFEI COMPREHENSIVE NATIONAL ARTIFICIAL INTELLIGENCE RESEARCH INSTITUTE (ANHUI ARTIFICIAL INTELLIGENCE LABORATORY) |
Score | 3.6591742 |
Snippet | The invention discloses a clustering algorithm fusion-based photovoltaic power generation prediction method. The method comprises the steps of obtaining... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING CONVERSION OR DISTRIBUTION OF ELECTRIC POWER COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING ELECTRICITY GENERATION PHYSICS SYSTEMS FOR STORING ELECTRIC ENERGY SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
Title | Photovoltaic power generation prediction method based on clustering algorithm fusion |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240301&DB=EPODOC&locale=&CC=CN&NR=117638929A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8gfr4pahQ_UhPD2yKDsmUPi5GOhZgwiEHDG6GlYxjcljFi4l_vtQzxRd_6kTW3S66_u_b6O4B7qx7WuekIA33RpkHR5zA4tzBwlVJQyhuh1GQ6vcDqvtLnUWtUgvfNWxjNE_qpyRHRogTae67363R7iOXp3MrlA5_jUPLoD12vVkTHilwOY2Ov7XYGfa_Paoy5LKgFL65p2gqbG87TDuyiG20ra-i8tdWrlPQ3pPjHsDfA1eL8BEpfUQUO2abyWgUOesWFdwX2dYamWOJgYYXLUxgOoiRPcF9BCQVJVZ0zMtP00Upwkmbqc91c14cmCqqmBPtisVLECAhXZLKYJdk8jz5IuFInZmdw53eGrGugoOMfrYxZsP2n5jmU4ySWF0BaE9vGaBnjIMeifGI5VApOOZdTO8Qp6xKqf69T_W_yCo6UhtcJWNdQzrOVvEFEzvmtVuU3YK-SCg |
link.rule.ids | 230,309,783,888,25576,76876 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8gfuCbokbxqyaGt0U-ypY9LEY6CCoMYqbhjdDSAQbZwraY-Nd7LSC-6Fs_suZ2yfV3115_B3BrloISL9vCQF-0alD0OQzOTQxcpRSU8kogNZlOxzNbr_SpX-tn4H39FkbzhH5qckS0KIH2nuj9OtocYrk6tzK-41McCu-bvuMWV9GxIpfD2NitO41e1-2yImMO84rei1MuWwqbK_bDFmyji20pa2i81dWrlOg3pDQPYKeHq82TQ8h8TfKQY-vKa3nY66wuvPOwqzM0RYyDKyuMj8DvTcIkxH0FJRQkUnXOyFjTRyvBSbRQn-vmsj40UVA1ItgXs1QRIyBckeFsHC6myeSDBKk6MTuGm2bDZy0DBR38aGXAvM0_VU8gOw_n8hRIbWhZGC1jHGSblA9Nm0rBKedyZAU4ZZ5B4e91Cv9NXkOu5Xfag_aj93wO-0rby2SsC8gmi1ReIjon_Eqr9Rtm8ZT9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Photovoltaic+power+generation+prediction+method+based+on+clustering+algorithm+fusion&rft.inventor=CHENG+JINRUI&rft.inventor=HUANG+SHUAI&rft.inventor=WANG+XINGHU&rft.date=2024-03-01&rft.externalDBID=A&rft.externalDocID=CN117638929A |