Visual self-attention accelerator optimization method based on FPGA
The invention discloses a visual self-attention accelerator optimization method based on an FPGA, and the method comprises the following steps: carrying out the dynamic token pruning of a visual self-attention model through a dynamic token pruning scheme, removing redundant information, and reducing...
Saved in:
Main Authors | , , |
---|---|
Format | Patent |
Language | Chinese English |
Published |
27.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The invention discloses a visual self-attention accelerator optimization method based on an FPGA, and the method comprises the following steps: carrying out the dynamic token pruning of a visual self-attention model through a dynamic token pruning scheme, removing redundant information, and reducing the calculation amount of the visual self-attention model; through a design mode of a single visual self-attention calculation layer on an FPGA, a calculation process is segmented by using a matrix slicing mode, an optimal calculation resource allocation strategy is solved based on a genetic algorithm, and maximum load balancing is realized; the calculation amount is reduced, the model operation time is shortened, and the operation efficiency of the accelerator is improved.
本发明公开了一种基于FPGA的视觉自注意力加速器优化方法,包括以下步骤:通过动态令牌剪枝方案对视觉自注意力模型进行动态令牌剪枝,去除冗杂信息,减少视觉自注意力模型的计算量;通过在FPGA上的单个视觉自注意力计算层的设计方式、使用矩阵切块的方式对计算过程进行分割,基于遗传算法求解最优的计算资源分配策略,实现最大化负载均衡;本发明减少计算量,降低模型运行时间,提高加速器的运行效率。 |
---|---|
AbstractList | The invention discloses a visual self-attention accelerator optimization method based on an FPGA, and the method comprises the following steps: carrying out the dynamic token pruning of a visual self-attention model through a dynamic token pruning scheme, removing redundant information, and reducing the calculation amount of the visual self-attention model; through a design mode of a single visual self-attention calculation layer on an FPGA, a calculation process is segmented by using a matrix slicing mode, an optimal calculation resource allocation strategy is solved based on a genetic algorithm, and maximum load balancing is realized; the calculation amount is reduced, the model operation time is shortened, and the operation efficiency of the accelerator is improved.
本发明公开了一种基于FPGA的视觉自注意力加速器优化方法,包括以下步骤:通过动态令牌剪枝方案对视觉自注意力模型进行动态令牌剪枝,去除冗杂信息,减少视觉自注意力模型的计算量;通过在FPGA上的单个视觉自注意力计算层的设计方式、使用矩阵切块的方式对计算过程进行分割,基于遗传算法求解最优的计算资源分配策略,实现最大化负载均衡;本发明减少计算量,降低模型运行时间,提高加速器的运行效率。 |
Author | LIN HAIYAN LUO CONGHUI HUANG YIHUA |
Author_xml | – fullname: LUO CONGHUI – fullname: LIN HAIYAN – fullname: HUANG YIHUA |
BookMark | eNrjYmDJy89L5WRwDsssLk3MUShOzUnTTSwpSc0ryczPU0hMTk7NSS1KLMkvUsgvKMnMzaxKBEvkppZk5KcoJCUWp6YoAPluAe6OPAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMTk1L7Uk3tnP0NDczNDAzNDI0ZgYNQCf3jQC |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | 一种基于FPGA的视觉自注意力加速器优化方法 |
ExternalDocumentID | CN117610612A |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_CN117610612A3 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 13:15:38 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | Chinese English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_CN117610612A3 |
Notes | Application Number: CN202311355863 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240227&DB=EPODOC&CC=CN&NR=117610612A |
ParticipantIDs | epo_espacenet_CN117610612A |
PublicationCentury | 2000 |
PublicationDate | 20240227 |
PublicationDateYYYYMMDD | 2024-02-27 |
PublicationDate_xml | – month: 02 year: 2024 text: 20240227 day: 27 |
PublicationDecade | 2020 |
PublicationYear | 2024 |
RelatedCompanies | SUN YAT-SEN UNIVERSITY |
RelatedCompanies_xml | – name: SUN YAT-SEN UNIVERSITY |
Score | 3.6578026 |
Snippet | The invention discloses a visual self-attention accelerator optimization method based on an FPGA, and the method comprises the following steps: carrying out... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
Title | Visual self-attention accelerator optimization method based on FPGA |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240227&DB=EPODOC&locale=&CC=CN&NR=117610612A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_m_HzTqej8IIL0rbh-x4ciW7o6hHVF5tjbWNqMTeY6bIfgX-8lds4XfcwFQnJw-V1y97sDuG1Y6BOYBtcTV6S6bd9znbvU0Ck3hewdljYsSRTuRm7nxX4aOsMKvK65MKpO6IcqjogWlaC9F-q-Xm4-sQKVW5nf8RmKsoew7wda-TqWoQLT04KW3457QY9pjPks0qJn3zDwvS7hvLkF2-hGe9Ia2oOWZKUsf0NKeAg7Ma62KI6g8jmtwT5bd16rwV63DHjXYFdlaCY5CksrzI-BDWb5ajwnuZhPdFkfU2UsknGSIIaosDnJ8CZ4KymW5LtLNJGAlRIch_Fj8wRuwnafdXTc1-hHCSMWbY5gnUJ1kS3EGZCJnTomTajHPdk1wxgLk6a0QW1huKnpWOdQ_3ud-n-TF3AgFaro294lVIv3lbhCAC74tdLcF-6ZiQI |
link.rule.ids | 230,309,783,888,25576,76876 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8gfuCbokTxqyZmb4vsg60-LAY6JioMYpDwRuhWIgaBuBET_3qvdYgv-thr0rSXXH_X3v3uAK4qFvoEpsH1yBGxbts3XOcONXTKTSF7h8UVSxKF26HTfLYfBtVBDl5XXBhVJ_RDFUdEi4rQ3lN1Xy_Wn1i-yq1MrvkERfPboOf5WvY6lqEC09X8utfodvwO0xjzWKiFT55h4HtdwnltAzbRxXalNTT6dclKWfyGlGAPtrq42izdh9znSxEKbNV5rQg77SzgXYRtlaEZJSjMrDA5ANafJMvRlCRiOtZlfUyVsUhGUYQYosLmZI43wVtGsSTfXaKJBKyY4Djo3tUO4TJo9FhTx30Nf5QwZOH6CFYJ8rP5TBwBGdtx1aQRdbkru2YYI2HSmFaoLQwnNqvWMZT_Xqf83-QFFJq9dmvYug8fT2BXKldRud1TyKfvS3GGYJzyc6XFL4eOi_U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Visual+self-attention+accelerator+optimization+method+based+on+FPGA&rft.inventor=LUO+CONGHUI&rft.inventor=LIN+HAIYAN&rft.inventor=HUANG+YIHUA&rft.date=2024-02-27&rft.externalDBID=A&rft.externalDocID=CN117610612A |