Visual self-attention accelerator optimization method based on FPGA

The invention discloses a visual self-attention accelerator optimization method based on an FPGA, and the method comprises the following steps: carrying out the dynamic token pruning of a visual self-attention model through a dynamic token pruning scheme, removing redundant information, and reducing...

Full description

Saved in:
Bibliographic Details
Main Authors LUO CONGHUI, LIN HAIYAN, HUANG YIHUA
Format Patent
LanguageChinese
English
Published 27.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The invention discloses a visual self-attention accelerator optimization method based on an FPGA, and the method comprises the following steps: carrying out the dynamic token pruning of a visual self-attention model through a dynamic token pruning scheme, removing redundant information, and reducing the calculation amount of the visual self-attention model; through a design mode of a single visual self-attention calculation layer on an FPGA, a calculation process is segmented by using a matrix slicing mode, an optimal calculation resource allocation strategy is solved based on a genetic algorithm, and maximum load balancing is realized; the calculation amount is reduced, the model operation time is shortened, and the operation efficiency of the accelerator is improved. 本发明公开了一种基于FPGA的视觉自注意力加速器优化方法,包括以下步骤:通过动态令牌剪枝方案对视觉自注意力模型进行动态令牌剪枝,去除冗杂信息,减少视觉自注意力模型的计算量;通过在FPGA上的单个视觉自注意力计算层的设计方式、使用矩阵切块的方式对计算过程进行分割,基于遗传算法求解最优的计算资源分配策略,实现最大化负载均衡;本发明减少计算量,降低模型运行时间,提高加速器的运行效率。
AbstractList The invention discloses a visual self-attention accelerator optimization method based on an FPGA, and the method comprises the following steps: carrying out the dynamic token pruning of a visual self-attention model through a dynamic token pruning scheme, removing redundant information, and reducing the calculation amount of the visual self-attention model; through a design mode of a single visual self-attention calculation layer on an FPGA, a calculation process is segmented by using a matrix slicing mode, an optimal calculation resource allocation strategy is solved based on a genetic algorithm, and maximum load balancing is realized; the calculation amount is reduced, the model operation time is shortened, and the operation efficiency of the accelerator is improved. 本发明公开了一种基于FPGA的视觉自注意力加速器优化方法,包括以下步骤:通过动态令牌剪枝方案对视觉自注意力模型进行动态令牌剪枝,去除冗杂信息,减少视觉自注意力模型的计算量;通过在FPGA上的单个视觉自注意力计算层的设计方式、使用矩阵切块的方式对计算过程进行分割,基于遗传算法求解最优的计算资源分配策略,实现最大化负载均衡;本发明减少计算量,降低模型运行时间,提高加速器的运行效率。
Author LIN HAIYAN
LUO CONGHUI
HUANG YIHUA
Author_xml – fullname: LUO CONGHUI
– fullname: LIN HAIYAN
– fullname: HUANG YIHUA
BookMark eNrjYmDJy89L5WRwDsssLk3MUShOzUnTTSwpSc0ryczPU0hMTk7NSS1KLMkvUsgvKMnMzaxKBEvkppZk5KcoJCUWp6YoAPluAe6OPAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMTk1L7Uk3tnP0NDczNDAzNDI0ZgYNQCf3jQC
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
DocumentTitleAlternate 一种基于FPGA的视觉自注意力加速器优化方法
ExternalDocumentID CN117610612A
GroupedDBID EVB
ID FETCH-epo_espacenet_CN117610612A3
IEDL.DBID EVB
IngestDate Fri Jul 19 13:15:38 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_CN117610612A3
Notes Application Number: CN202311355863
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240227&DB=EPODOC&CC=CN&NR=117610612A
ParticipantIDs epo_espacenet_CN117610612A
PublicationCentury 2000
PublicationDate 20240227
PublicationDateYYYYMMDD 2024-02-27
PublicationDate_xml – month: 02
  year: 2024
  text: 20240227
  day: 27
PublicationDecade 2020
PublicationYear 2024
RelatedCompanies SUN YAT-SEN UNIVERSITY
RelatedCompanies_xml – name: SUN YAT-SEN UNIVERSITY
Score 3.6578026
Snippet The invention discloses a visual self-attention accelerator optimization method based on an FPGA, and the method comprises the following steps: carrying out...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
Title Visual self-attention accelerator optimization method based on FPGA
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240227&DB=EPODOC&locale=&CC=CN&NR=117610612A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_m_HzTqej8IIL0rbh-x4ciW7o6hHVF5tjbWNqMTeY6bIfgX-8lds4XfcwFQnJw-V1y97sDuG1Y6BOYBtcTV6S6bd9znbvU0Ck3hewdljYsSRTuRm7nxX4aOsMKvK65MKpO6IcqjogWlaC9F-q-Xm4-sQKVW5nf8RmKsoew7wda-TqWoQLT04KW3457QY9pjPks0qJn3zDwvS7hvLkF2-hGe9Ia2oOWZKUsf0NKeAg7Ma62KI6g8jmtwT5bd16rwV63DHjXYFdlaCY5CksrzI-BDWb5ajwnuZhPdFkfU2UsknGSIIaosDnJ8CZ4KymW5LtLNJGAlRIch_Fj8wRuwnafdXTc1-hHCSMWbY5gnUJ1kS3EGZCJnTomTajHPdk1wxgLk6a0QW1huKnpWOdQ_3ud-n-TF3AgFaro294lVIv3lbhCAC74tdLcF-6ZiQI
link.rule.ids 230,309,783,888,25576,76876
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8gfuCbokTxqyZmb4vsg60-LAY6JioMYpDwRuhWIgaBuBET_3qvdYgv-thr0rSXXH_X3v3uAK4qFvoEpsH1yBGxbts3XOcONXTKTSF7h8UVSxKF26HTfLYfBtVBDl5XXBhVJ_RDFUdEi4rQ3lN1Xy_Wn1i-yq1MrvkERfPboOf5WvY6lqEC09X8utfodvwO0xjzWKiFT55h4HtdwnltAzbRxXalNTT6dclKWfyGlGAPtrq42izdh9znSxEKbNV5rQg77SzgXYRtlaEZJSjMrDA5ANafJMvRlCRiOtZlfUyVsUhGUYQYosLmZI43wVtGsSTfXaKJBKyY4Djo3tUO4TJo9FhTx30Nf5QwZOH6CFYJ8rP5TBwBGdtx1aQRdbkru2YYI2HSmFaoLQwnNqvWMZT_Xqf83-QFFJq9dmvYug8fT2BXKldRud1TyKfvS3GGYJzyc6XFL4eOi_U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Visual+self-attention+accelerator+optimization+method+based+on+FPGA&rft.inventor=LUO+CONGHUI&rft.inventor=LIN+HAIYAN&rft.inventor=HUANG+YIHUA&rft.date=2024-02-27&rft.externalDBID=A&rft.externalDocID=CN117610612A