Long-term river water quality prediction method based on improved TCN model

The invention relates to a long-term river water quality prediction method based on an improved TCN model. The method comprises the steps of firstly inputting river water pollutant concentration data into an SG filter for noise reduction processing, then decomposing the processed data into a trend s...

Full description

Saved in:
Bibliographic Details
Main Authors HU YANKUN, LIU FANLI, JIN JIXIN, SONG CHUNMEI, WANG NING, ZHOU XIAOLEI, WANG YINGYANG, WANG XINGGANG, QI BOLIN
Format Patent
LanguageChinese
English
Published 22.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The invention relates to a long-term river water quality prediction method based on an improved TCN model. The method comprises the steps of firstly inputting river water pollutant concentration data into an SG filter for noise reduction processing, then decomposing the processed data into a trend sequence, a seasonal sequence and a residual sequence by adopting an STL time sequence decomposition method, and respectively inputting the trend sequence and the residual sequence obtained after decomposition into an improved TCN model for training and prediction. And finally, fusing predicted values of the trend sequence and the residual sequence with an original seasonal sequence to obtain a river water quality long-term prediction result. According to the method, the defects of a basic TCN model are improved, and the long-term prediction capability of the model is further improved through a data noise reduction and data decomposition method. The effectiveness of the method is verified through specific experiment
AbstractList The invention relates to a long-term river water quality prediction method based on an improved TCN model. The method comprises the steps of firstly inputting river water pollutant concentration data into an SG filter for noise reduction processing, then decomposing the processed data into a trend sequence, a seasonal sequence and a residual sequence by adopting an STL time sequence decomposition method, and respectively inputting the trend sequence and the residual sequence obtained after decomposition into an improved TCN model for training and prediction. And finally, fusing predicted values of the trend sequence and the residual sequence with an original seasonal sequence to obtain a river water quality long-term prediction result. According to the method, the defects of a basic TCN model are improved, and the long-term prediction capability of the model is further improved through a data noise reduction and data decomposition method. The effectiveness of the method is verified through specific experiment
Author WANG NING
HU YANKUN
QI BOLIN
LIU FANLI
SONG CHUNMEI
WANG XINGGANG
ZHOU XIAOLEI
JIN JIXIN
WANG YINGYANG
Author_xml – fullname: HU YANKUN
– fullname: LIU FANLI
– fullname: JIN JIXIN
– fullname: SONG CHUNMEI
– fullname: WANG NING
– fullname: ZHOU XIAOLEI
– fullname: WANG YINGYANG
– fullname: WANG XINGGANG
– fullname: QI BOLIN
BookMark eNqNik0KwjAUBrPQhX93eB6gi0ahaymKoHTVfYnNVw00eTGJFW9vFh7A1czALMXMscNCXK7s7kVCsBTMhEBvlYOeLzWa9CEfoE2fDDuySA_WdFMRmnIb6wNP2du6Icsa41rMBzVGbH5cie3p2NbnAp47RK96OKSubsqykpWUcn_Y_fN8AW-uNts
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
DocumentTitleAlternate 一种基于改进TCN模型的长期河流水质预测方法
ExternalDocumentID CN117272224A
GroupedDBID EVB
ID FETCH-epo_espacenet_CN117272224A3
IEDL.DBID EVB
IngestDate Fri Jul 19 13:09:20 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_CN117272224A3
Notes Application Number: CN202311221135
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231222&DB=EPODOC&CC=CN&NR=117272224A
ParticipantIDs epo_espacenet_CN117272224A
PublicationCentury 2000
PublicationDate 20231222
PublicationDateYYYYMMDD 2023-12-22
PublicationDate_xml – month: 12
  year: 2023
  text: 20231222
  day: 22
PublicationDecade 2020
PublicationYear 2023
RelatedCompanies SHENYANG INSTITUTE OF COMPUTING TECHNOLOGY CO., LTD., CHINESE ACADEMY OF SCIENCES
RelatedCompanies_xml – name: SHENYANG INSTITUTE OF COMPUTING TECHNOLOGY CO., LTD., CHINESE ACADEMY OF SCIENCES
Score 3.6449573
Snippet The invention relates to a long-term river water quality prediction method based on an improved TCN model. The method comprises the steps of firstly inputting...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
Title Long-term river water quality prediction method based on improved TCN model
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231222&DB=EPODOC&locale=&CC=CN&NR=117272224A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_m_HzTquj8IIL0rbjW2LUPRVy6MtR1Q6rsbTRtpvOhK11l6F_vJeucL_qWD3IkB5df7nIfAJdm3BI2Io1hj7lr0CThBjdbieHSmJo8dXlsy-DkXmh3n-n98GZYg_dlLIzKEzpXyRFRohKU91Ld1_nKiOUr38rZFZ_g0PQ2iDxfr7RjfKwg3ul-2-sM-n6f6Yx5LNTDJ8-UQI1z9G4N1vEZ3ZLS0Hlpy6iU_DekBLuwMUBqWbkHta83DbbZsvKaBlu96sNbg03loZnMcLCSwtk-PDxOs1dD3qmkkG4VZI6UCrKIj_wkeSGXyzOQRX1oIqEqJdifKBMCtiMWElUE5wAugk7Eugbub_TDjBELV0e5PoR6Ns3EERDBadq0HT6W6ewdN-aobbpNYSVcpJZLnWNo_E2n8d_kCexIxkoXDss6hXpZfIgzBOKSnysOfgPVVY15
link.rule.ids 230,309,783,888,25576,76876
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4gPvCmKFF8rYnprZHWtdBDY2RLU6UUYqrhRrptUTwUUmqI_npnlyJe9LaP7GR3ktlvZ3YeAFda2EwMRBrVGHNTpVHEVa41I9WkIdV4bPLQEMHJPd9wn-nj8HZYgvdVLIzME7qQyRFRoiKU91ze17O1EcuWvpXzaz7BoemdE1i2UmjH-FhBvFPsttUZ9O0-UxizmK_4T5YmgBrn6P0GbOITuymkofPSFlEps9-Q4uzB1gCppfk-lL7eqlBhq8prVdjpFR_eVdiWHprRHAcLKZwfQNebpq-quFNJJtwqyAIpZWQZH_lJZplYLs5AlvWhiYCqmGB_Ik0I2A6YT2QRnEO4dDoBc1Xc3-iHGSPmr49yU4NyOk2TIyAJp3HDaPGxSGffMkOO2qbZSPSIJ7Fu0tYx1P-mU_9v8gIqbtDzRt6D3z2BXcFk4c6h66dQzrOP5AxBOefnkpvfpGKQbA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Long-term+river+water+quality+prediction+method+based+on+improved+TCN+model&rft.inventor=HU+YANKUN&rft.inventor=LIU+FANLI&rft.inventor=JIN+JIXIN&rft.inventor=SONG+CHUNMEI&rft.inventor=WANG+NING&rft.inventor=ZHOU+XIAOLEI&rft.inventor=WANG+YINGYANG&rft.inventor=WANG+XINGGANG&rft.inventor=QI+BOLIN&rft.date=2023-12-22&rft.externalDBID=A&rft.externalDocID=CN117272224A