Turnout switch machine fault diagnosis method and device based on ensemble learning
The invention discloses a turnout switch machine fault diagnosis method and device based on ensemble learning. The method comprises the following steps: collecting action current signals of a turnout switch machine; calculating a time domain feature and a multi-scale permutation entropy feature of e...
Saved in:
Main Authors | , , , , , , , , |
---|---|
Format | Patent |
Language | Chinese English |
Published |
17.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The invention discloses a turnout switch machine fault diagnosis method and device based on ensemble learning. The method comprises the following steps: collecting action current signals of a turnout switch machine; calculating a time domain feature and a multi-scale permutation entropy feature of each phase of current signal of the switch machine, and constructing a feature set of each state; calculating correlation factors between the feature sets to obtain the weight of each category feature, and adaptively selecting sensitive features according to a dynamic threshold to divide a training set and a test set; constructing a turnout switch machine fault diagnosis IFL-LightGBM model, and enabling the model to be more concentrated on difficult-to-classify samples by improving a loss function; and training and optimizing parameters of the IFL-LightGBM model by using the training set, and performing fault diagnosis on data of the turnout switch machine to be diagnosed to obtain a fault classification result of t |
---|---|
AbstractList | The invention discloses a turnout switch machine fault diagnosis method and device based on ensemble learning. The method comprises the following steps: collecting action current signals of a turnout switch machine; calculating a time domain feature and a multi-scale permutation entropy feature of each phase of current signal of the switch machine, and constructing a feature set of each state; calculating correlation factors between the feature sets to obtain the weight of each category feature, and adaptively selecting sensitive features according to a dynamic threshold to divide a training set and a test set; constructing a turnout switch machine fault diagnosis IFL-LightGBM model, and enabling the model to be more concentrated on difficult-to-classify samples by improving a loss function; and training and optimizing parameters of the IFL-LightGBM model by using the training set, and performing fault diagnosis on data of the turnout switch machine to be diagnosed to obtain a fault classification result of t |
Author | CHEN YANJUN JIN ZHENZHEN LIU QIYANG HE DEQIANG LAO ZHENPENG LI XIANWANG HE YILING LI YULIN FU YANG |
Author_xml | – fullname: JIN ZHENZHEN – fullname: LIU QIYANG – fullname: CHEN YANJUN – fullname: HE DEQIANG – fullname: LAO ZHENPENG – fullname: HE YILING – fullname: LI YULIN – fullname: FU YANG – fullname: LI XIANWANG |
BookMark | eNqNyj0OgkAQBtAttPDvDuMBTCQa1NIQjZWN9GTY_YBNllnCLHp9Gw9g9Zq3NDOJgoV5ldMocUqkH59sRz3bzguo4Skkcp5bieqVeqQuOmJx5PD2FlSzwlEUgij6OoACeBQv7drMGw6Kzc-V2d5vZfHYYYgVdGALQaqKZ5bl58sxO-2vh3_OF5_LOkI |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | 一种基于集成学习的道岔转辙机故障诊断方法及装置 |
ExternalDocumentID | CN116894170A |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_CN116894170A3 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 13:08:53 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | Chinese English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_CN116894170A3 |
Notes | Application Number: CN202310610092 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231017&DB=EPODOC&CC=CN&NR=116894170A |
ParticipantIDs | epo_espacenet_CN116894170A |
PublicationCentury | 2000 |
PublicationDate | 20231017 |
PublicationDateYYYYMMDD | 2023-10-17 |
PublicationDate_xml | – month: 10 year: 2023 text: 20231017 day: 17 |
PublicationDecade | 2020 |
PublicationYear | 2023 |
RelatedCompanies | GUANGXI UNIVERSITY |
RelatedCompanies_xml | – name: GUANGXI UNIVERSITY |
Score | 3.6318054 |
Snippet | The invention discloses a turnout switch machine fault diagnosis method and device based on ensemble learning. The method comprises the following steps:... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING ENSURING THE SAFETY OF RAILWAY TRAFFIC GUIDING RAILWAY TRAFFIC MEASURING MEASURING ELECTRIC VARIABLES MEASURING MAGNETIC VARIABLES PERFORMING OPERATIONS PHYSICS RAILWAYS TESTING TRANSPORTING |
Title | Turnout switch machine fault diagnosis method and device based on ensemble learning |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231017&DB=EPODOC&locale=&CC=CN&NR=116894170A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_m_HzTqej8IIL0bbjQdFkfirh0Ywjrhk7Z21jSVCtbO2zHwL_eJOucL_p6gSM5uK_c7-4AbrEb6uqbULmJTWpEubCaa3OhkQARJY4rJdHNyb2g0X0hjyNnVIKPdS-MmRO6NMMRlUYJpe-5sdfzzSeWb7CV2R2PFSm97ww93yqyYx2sYGr5La896Pt9ZjHmscAKnjyMG02XYFp_2IJtFUZTrQ3t15buSpn_dimdQ9gZKG5JfgSlr_cK7LP15rUK7PWKgncFdg1CU2SKWGhhdgzPej19ushRtoyV0NHMACIliiaLaY7CFXguztBqOzSaJCEKpbYISPusEKUJUsmrnPGpRMXWiLcTuOm0h6xbU_cc_whlzILNk-xTKCdpIs8ANUU0adQppzpOaHLsUq4SLCIjIWw3dPg5VP_mU_3v8AIOtIC13cb0Esr550JeKYec82sjyW-3UY-i |
link.rule.ids | 230,309,783,888,25576,76876 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8gfuCbokbxqyZmb0SWFcoeFiMdBBUGUTS8kbXrFAMbcSMk_vW2ZYgv-npNLu0l99X73R3AtWkHqvrGZW5i4TKWLqxsW4wrJEBIcNUWAqvm5K5Xa7_gh2F1mIOPVS-MnhO60MMRpUZxqe-pttez9SeWq7GVyQ0bS1J82xo4rpFlxypYMYnhNpxmv-f2qEGpQz3De3JMs1a3sUkqdxuwKUNsorSh-dpQXSmz3y6ltQdbfcktSvch9_VehAJdbV4rwk43K3gXYVsjNHkiiZkWJgfwrNbTx_MUJYuxFDqaakCkQKE_n6QoWILnxglabodGfhSgQCiLgJTPClAcIZm8iimbCJRtjXg7hKtWc0DbZXnP0Y9QRtRbP8k6gnwUR-IYUJ2Hfq1CGFFxQp2ZNmEywcIi5Nyygyo7gdLffEr_HV5CoT3odkade-_xFHaVsJUNN8kZ5NPPuTiXzjllF1qq36B6kpU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Turnout+switch+machine+fault+diagnosis+method+and+device+based+on+ensemble+learning&rft.inventor=JIN+ZHENZHEN&rft.inventor=LIU+QIYANG&rft.inventor=CHEN+YANJUN&rft.inventor=HE+DEQIANG&rft.inventor=LAO+ZHENPENG&rft.inventor=HE+YILING&rft.inventor=LI+YULIN&rft.inventor=FU+YANG&rft.inventor=LI+XIANWANG&rft.date=2023-10-17&rft.externalDBID=A&rft.externalDocID=CN116894170A |