Turnout switch machine fault diagnosis method and device based on ensemble learning

The invention discloses a turnout switch machine fault diagnosis method and device based on ensemble learning. The method comprises the following steps: collecting action current signals of a turnout switch machine; calculating a time domain feature and a multi-scale permutation entropy feature of e...

Full description

Saved in:
Bibliographic Details
Main Authors JIN ZHENZHEN, LIU QIYANG, CHEN YANJUN, HE DEQIANG, LAO ZHENPENG, HE YILING, LI YULIN, FU YANG, LI XIANWANG
Format Patent
LanguageChinese
English
Published 17.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The invention discloses a turnout switch machine fault diagnosis method and device based on ensemble learning. The method comprises the following steps: collecting action current signals of a turnout switch machine; calculating a time domain feature and a multi-scale permutation entropy feature of each phase of current signal of the switch machine, and constructing a feature set of each state; calculating correlation factors between the feature sets to obtain the weight of each category feature, and adaptively selecting sensitive features according to a dynamic threshold to divide a training set and a test set; constructing a turnout switch machine fault diagnosis IFL-LightGBM model, and enabling the model to be more concentrated on difficult-to-classify samples by improving a loss function; and training and optimizing parameters of the IFL-LightGBM model by using the training set, and performing fault diagnosis on data of the turnout switch machine to be diagnosed to obtain a fault classification result of t
AbstractList The invention discloses a turnout switch machine fault diagnosis method and device based on ensemble learning. The method comprises the following steps: collecting action current signals of a turnout switch machine; calculating a time domain feature and a multi-scale permutation entropy feature of each phase of current signal of the switch machine, and constructing a feature set of each state; calculating correlation factors between the feature sets to obtain the weight of each category feature, and adaptively selecting sensitive features according to a dynamic threshold to divide a training set and a test set; constructing a turnout switch machine fault diagnosis IFL-LightGBM model, and enabling the model to be more concentrated on difficult-to-classify samples by improving a loss function; and training and optimizing parameters of the IFL-LightGBM model by using the training set, and performing fault diagnosis on data of the turnout switch machine to be diagnosed to obtain a fault classification result of t
Author CHEN YANJUN
JIN ZHENZHEN
LIU QIYANG
HE DEQIANG
LAO ZHENPENG
LI XIANWANG
HE YILING
LI YULIN
FU YANG
Author_xml – fullname: JIN ZHENZHEN
– fullname: LIU QIYANG
– fullname: CHEN YANJUN
– fullname: HE DEQIANG
– fullname: LAO ZHENPENG
– fullname: HE YILING
– fullname: LI YULIN
– fullname: FU YANG
– fullname: LI XIANWANG
BookMark eNqNyj0OgkAQBtAttPDvDuMBTCQa1NIQjZWN9GTY_YBNllnCLHp9Gw9g9Zq3NDOJgoV5ldMocUqkH59sRz3bzguo4Skkcp5bieqVeqQuOmJx5PD2FlSzwlEUgij6OoACeBQv7drMGw6Kzc-V2d5vZfHYYYgVdGALQaqKZ5bl58sxO-2vh3_OF5_LOkI
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
DocumentTitleAlternate 一种基于集成学习的道岔转辙机故障诊断方法及装置
ExternalDocumentID CN116894170A
GroupedDBID EVB
ID FETCH-epo_espacenet_CN116894170A3
IEDL.DBID EVB
IngestDate Fri Jul 19 13:08:53 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_CN116894170A3
Notes Application Number: CN202310610092
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231017&DB=EPODOC&CC=CN&NR=116894170A
ParticipantIDs epo_espacenet_CN116894170A
PublicationCentury 2000
PublicationDate 20231017
PublicationDateYYYYMMDD 2023-10-17
PublicationDate_xml – month: 10
  year: 2023
  text: 20231017
  day: 17
PublicationDecade 2020
PublicationYear 2023
RelatedCompanies GUANGXI UNIVERSITY
RelatedCompanies_xml – name: GUANGXI UNIVERSITY
Score 3.6318054
Snippet The invention discloses a turnout switch machine fault diagnosis method and device based on ensemble learning. The method comprises the following steps:...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
ENSURING THE SAFETY OF RAILWAY TRAFFIC
GUIDING RAILWAY TRAFFIC
MEASURING
MEASURING ELECTRIC VARIABLES
MEASURING MAGNETIC VARIABLES
PERFORMING OPERATIONS
PHYSICS
RAILWAYS
TESTING
TRANSPORTING
Title Turnout switch machine fault diagnosis method and device based on ensemble learning
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231017&DB=EPODOC&locale=&CC=CN&NR=116894170A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_m_HzTqej8IIL0bbjQdFkfirh0Ywjrhk7Z21jSVCtbO2zHwL_eJOucL_p6gSM5uK_c7-4AbrEb6uqbULmJTWpEubCaa3OhkQARJY4rJdHNyb2g0X0hjyNnVIKPdS-MmRO6NMMRlUYJpe-5sdfzzSeWb7CV2R2PFSm97ww93yqyYx2sYGr5La896Pt9ZjHmscAKnjyMG02XYFp_2IJtFUZTrQ3t15buSpn_dimdQ9gZKG5JfgSlr_cK7LP15rUK7PWKgncFdg1CU2SKWGhhdgzPej19ushRtoyV0NHMACIliiaLaY7CFXguztBqOzSaJCEKpbYISPusEKUJUsmrnPGpRMXWiLcTuOm0h6xbU_cc_whlzILNk-xTKCdpIs8ANUU0adQppzpOaHLsUq4SLCIjIWw3dPg5VP_mU_3v8AIOtIC13cb0Esr550JeKYec82sjyW-3UY-i
link.rule.ids 230,309,783,888,25576,76876
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8gfuCbokbxqyZmb0SWFcoeFiMdBBUGUTS8kbXrFAMbcSMk_vW2ZYgv-npNLu0l99X73R3AtWkHqvrGZW5i4TKWLqxsW4wrJEBIcNUWAqvm5K5Xa7_gh2F1mIOPVS-MnhO60MMRpUZxqe-pttez9SeWq7GVyQ0bS1J82xo4rpFlxypYMYnhNpxmv-f2qEGpQz3De3JMs1a3sUkqdxuwKUNsorSh-dpQXSmz3y6ltQdbfcktSvch9_VehAJdbV4rwk43K3gXYVsjNHkiiZkWJgfwrNbTx_MUJYuxFDqaakCkQKE_n6QoWILnxglabodGfhSgQCiLgJTPClAcIZm8iimbCJRtjXg7hKtWc0DbZXnP0Y9QRtRbP8k6gnwUR-IYUJ2Hfq1CGFFxQp2ZNmEywcIi5Nyygyo7gdLffEr_HV5CoT3odkade-_xFHaVsJUNN8kZ5NPPuTiXzjllF1qq36B6kpU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Turnout+switch+machine+fault+diagnosis+method+and+device+based+on+ensemble+learning&rft.inventor=JIN+ZHENZHEN&rft.inventor=LIU+QIYANG&rft.inventor=CHEN+YANJUN&rft.inventor=HE+DEQIANG&rft.inventor=LAO+ZHENPENG&rft.inventor=HE+YILING&rft.inventor=LI+YULIN&rft.inventor=FU+YANG&rft.inventor=LI+XIANWANG&rft.date=2023-10-17&rft.externalDBID=A&rft.externalDocID=CN116894170A