Machine learning-based nucleoside derivative gelling ability prediction model

The invention provides a nucleoside derivative gelling ability prediction model based on machine learning, and belongs to the field of computer prediction systems. Based on feature selection, hyper-parameter optimization and algorithm comparison, an optimal machine model for predicting the nucleosid...

Full description

Saved in:
Bibliographic Details
Main Authors ZHAO XING, WEN YINGHUI, XU HAO, XIE LIANG, WANG KAICHAO, LI WEIQI
Format Patent
LanguageChinese
English
Published 12.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The invention provides a nucleoside derivative gelling ability prediction model based on machine learning, and belongs to the field of computer prediction systems. Based on feature selection, hyper-parameter optimization and algorithm comparison, an optimal machine model for predicting the nucleoside derivative hydrogel forming ability is successfully established. The model can effectively predict whether the nucleoside derivative has gelling ability. 12 nucleoside gels with high possibility are selected from the model, the hydrogel forming ability of the nucleoside gels is verified through experiments, 10 nucleoside derivatives can form the hydrogel, the success rate of forming the hydrogel is 83.33%, and it is indicated that the nucleoside derivative gelling ability prediction model is high in prediction accuracy. The machine model provides a tool for predicting nucleoside derivatives with hydrogel forming ability. 本发明提供了一种基于机器学习的核苷衍生物成胶能力预测模型,属于计算机预测系统领域。本发明基于特征选择、超参数优化和算法比较,成功建立了预测核苷衍生物水凝胶形成能力的最优的机器模型。该模型
AbstractList The invention provides a nucleoside derivative gelling ability prediction model based on machine learning, and belongs to the field of computer prediction systems. Based on feature selection, hyper-parameter optimization and algorithm comparison, an optimal machine model for predicting the nucleoside derivative hydrogel forming ability is successfully established. The model can effectively predict whether the nucleoside derivative has gelling ability. 12 nucleoside gels with high possibility are selected from the model, the hydrogel forming ability of the nucleoside gels is verified through experiments, 10 nucleoside derivatives can form the hydrogel, the success rate of forming the hydrogel is 83.33%, and it is indicated that the nucleoside derivative gelling ability prediction model is high in prediction accuracy. The machine model provides a tool for predicting nucleoside derivatives with hydrogel forming ability. 本发明提供了一种基于机器学习的核苷衍生物成胶能力预测模型,属于计算机预测系统领域。本发明基于特征选择、超参数优化和算法比较,成功建立了预测核苷衍生物水凝胶形成能力的最优的机器模型。该模型
Author XU HAO
LI WEIQI
XIE LIANG
ZHAO XING
WANG KAICHAO
WEN YINGHUI
Author_xml – fullname: ZHAO XING
– fullname: WEN YINGHUI
– fullname: XU HAO
– fullname: XIE LIANG
– fullname: WANG KAICHAO
– fullname: LI WEIQI
BookMark eNqNyj0KwkAQBtAttPDvDuMBAoZIrCUoNrGyD5vdzzgwzi7ZNeDttfAAVq95SzPToFiYtrXuwQoS2FFZh6K3CZ705QQhsQd5jDzZzBNogMj3kO1ZOL8pjvDsMgelZ_CQtZnfrSRsfq7M9ny6NZcCMXRI0Tooctdcy7I-7MtqVx-rf84HP1c4bQ
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
DocumentTitleAlternate 一种基于机器学习的核苷衍生物成胶能力预测模型
ExternalDocumentID CN116741306A
GroupedDBID EVB
ID FETCH-epo_espacenet_CN116741306A3
IEDL.DBID EVB
IngestDate Fri Jul 19 12:55:30 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_CN116741306A3
Notes Application Number: CN202310947817
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230912&DB=EPODOC&CC=CN&NR=116741306A
ParticipantIDs epo_espacenet_CN116741306A
PublicationCentury 2000
PublicationDate 20230912
PublicationDateYYYYMMDD 2023-09-12
PublicationDate_xml – month: 09
  year: 2023
  text: 20230912
  day: 12
PublicationDecade 2020
PublicationYear 2023
RelatedCompanies SICHUAN UNIVERSITY
RelatedCompanies_xml – name: SICHUAN UNIVERSITY
Score 3.62524
Snippet The invention provides a nucleoside derivative gelling ability prediction model based on machine learning, and belongs to the field of computer prediction...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
Title Machine learning-based nucleoside derivative gelling ability prediction model
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230912&DB=EPODOC&locale=&CC=CN&NR=116741306A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT4NAEJ7U-rwparQ-siaG28aWVpADMXaBNCbQxlTTW0NZaPVASUGN_npnVmq96HU3mbCzzGt39vsALg0rSTHLNrmF_p9OqwxuN6M270SGJXGXZazogILQ7D127kfXoxq8LN_CKJzQdwWOiBYVo72Xyl_nq0MsV_VWFleTZxya3_pDx9Wr6hjzabtl6G7X8QZ9ty90IRwR6uGDQ9cN5K_NuzVYxzTaImvwnrr0KiX_HVL8XdgYoLSs3IPa50yDbbFkXtNgK6guvDXYVB2acYGDlRUW-xAEqgMyYRXlw5RTLJIsI2ziOfFvMok_1pvC9GbTRMFus29A7g-WL0g6LZEpGpwDuPC9oehx_MLxjzrGIlwtpn0I9WyeJUfAzDS9saIWIRWZWDSlkTRSSSFYNu0Yy6RjaPwtp_Hf5AnskGq5Ik44hXq5eE3OMBSXk3Olwy-vKY0h
link.rule.ids 230,309,783,888,25576,76882
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4gPvCmqFF8rYnprREKtnBojGzboNJCTDXcSOm2qIe2garRX-_MWsSLXneTSXe289qd_T6Ac82IYsyyddVA_0-nVZraqQdNtRVohsBdFqGkA3I9vffQuh1djkrwsngLI3FC3yU4IlpUiPaeS3-dLQ-xLNlbOb-YPONQeuX4pqUU1THm052Gplhd0x4OrAFXODe5p3j3Jl03kL_Wr1dgFVPsNrEd2I9depWS_Q4pzhasDVFakm9D6fOpChW-YF6rwoZbXHhXYV12aIZzHCyscL4Dris7ICNWUD5MVYpFgiWETZwS_yYT-GO9SUxvNo0k7Db7BuT-YNmMpNMSmaTB2YUzx_Z5T8UvHP-oY8y95WKae1BO0iTaB6bHcdsIGoRUpGPRFAdCiwWFYFHvhFgmHUDtbzm1_yZPodLz3f64f-PdHcImqVmVJApHUM5nr9ExhuV8ciL1-QV16JAR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Machine+learning-based+nucleoside+derivative+gelling+ability+prediction+model&rft.inventor=ZHAO+XING&rft.inventor=WEN+YINGHUI&rft.inventor=XU+HAO&rft.inventor=XIE+LIANG&rft.inventor=WANG+KAICHAO&rft.inventor=LI+WEIQI&rft.date=2023-09-12&rft.externalDBID=A&rft.externalDocID=CN116741306A