Random forest prediction method for endometrial cancer postoperative concurrent lower limb deep venous thrombosis

The invention discloses a random forest prediction method for concurrent lower limb deep venous thrombosis after comprehensive stage operation of endometrial cancer. The method comprises the following steps: acquiring clinical data of endometrial cancer patients complicated with lower limb deep veno...

Full description

Saved in:
Bibliographic Details
Main Authors WANG DONGHONG, XIANG XIAORONG, YANG XU, LIU JUN, XIE QIAN, CHEN YU, GUO MIN, HU XINGXU, MENG ZEYU, WANG QIAN, TIAN KUNMING, XIA QIAN
Format Patent
LanguageChinese
English
Published 23.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The invention discloses a random forest prediction method for concurrent lower limb deep venous thrombosis after comprehensive stage operation of endometrial cancer. The method comprises the following steps: acquiring clinical data of endometrial cancer patients complicated with lower limb deep venous thrombosis after operation; carrying out feature screening by adopting single-factor and multi-factor analysis; and according to the screened features, adopting a random forest model in machine learning to predict whether the endometrial adenocarcinoma postoperation is concurrent with lower limb deep vein thrombosis, and outputting the result. Based on a machine learning method, the relationship model between the model and thrombus occurrence is established to effectively predict the risk of thrombus occurrence of the patient, so that the burden of doctors is relieved, and the diagnosis efficiency is improved. 本发明公开子宫内膜癌全面分期术后并发下肢深静脉血栓的随机森林预测方法。方法包括步骤:获取子宫内膜癌患者术后并发下肢深静脉血栓患者的临床资料;采用单因素及多因素分析进行特征筛选;根据筛选后的特征采用机器学习中
AbstractList The invention discloses a random forest prediction method for concurrent lower limb deep venous thrombosis after comprehensive stage operation of endometrial cancer. The method comprises the following steps: acquiring clinical data of endometrial cancer patients complicated with lower limb deep venous thrombosis after operation; carrying out feature screening by adopting single-factor and multi-factor analysis; and according to the screened features, adopting a random forest model in machine learning to predict whether the endometrial adenocarcinoma postoperation is concurrent with lower limb deep vein thrombosis, and outputting the result. Based on a machine learning method, the relationship model between the model and thrombus occurrence is established to effectively predict the risk of thrombus occurrence of the patient, so that the burden of doctors is relieved, and the diagnosis efficiency is improved. 本发明公开子宫内膜癌全面分期术后并发下肢深静脉血栓的随机森林预测方法。方法包括步骤:获取子宫内膜癌患者术后并发下肢深静脉血栓患者的临床资料;采用单因素及多因素分析进行特征筛选;根据筛选后的特征采用机器学习中
Author CHEN YU
LIU JUN
XIE QIAN
XIANG XIAORONG
HU XINGXU
XIA QIAN
MENG ZEYU
WANG QIAN
WANG DONGHONG
GUO MIN
YANG XU
TIAN KUNMING
Author_xml – fullname: WANG DONGHONG
– fullname: XIANG XIAORONG
– fullname: YANG XU
– fullname: LIU JUN
– fullname: XIE QIAN
– fullname: CHEN YU
– fullname: GUO MIN
– fullname: HU XINGXU
– fullname: MENG ZEYU
– fullname: WANG QIAN
– fullname: TIAN KUNMING
– fullname: XIA QIAN
BookMark eNqNyj0KwkAQhuEUWvh3h_EAgiEgWkpQrCzEPmw2X8jCZmbdncTra8ADWL3F8y6zGQtjkb0ehhvpqZWIpBQiGmfVCVMP7aSZgDAt0OiMJ2vYIlKQpBIQjboRZIXtECNYycv7y971NTVAoBEsQyLtovS1JJfW2bw1PmHz6yrbXi_P8rZDkAopGAuGVuU9zw9FXuxPx3Pxz_MBwjpG0A
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
DocumentTitleAlternate 子宫内膜癌术后并发下肢深静脉血栓的随机森林预测方法
ExternalDocumentID CN116313098A
GroupedDBID EVB
ID FETCH-epo_espacenet_CN116313098A3
IEDL.DBID EVB
IngestDate Fri Jul 19 14:18:30 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_CN116313098A3
Notes Application Number: CN202310384637
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230623&DB=EPODOC&CC=CN&NR=116313098A
ParticipantIDs epo_espacenet_CN116313098A
PublicationCentury 2000
PublicationDate 20230623
PublicationDateYYYYMMDD 2023-06-23
PublicationDate_xml – month: 06
  year: 2023
  text: 20230623
  day: 23
PublicationDecade 2020
PublicationYear 2023
RelatedCompanies ZUNYI MEDICAL UNIVERSITY
RelatedCompanies_xml – name: ZUNYI MEDICAL UNIVERSITY
Score 3.6089077
Snippet The invention discloses a random forest prediction method for concurrent lower limb deep venous thrombosis after comprehensive stage operation of endometrial...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
Title Random forest prediction method for endometrial cancer postoperative concurrent lower limb deep venous thrombosis
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230623&DB=EPODOC&locale=&CC=CN&NR=116313098A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4gPm-KGsVH1sT01ghteR0aI1sIMaEQgoYbYZdtxACtbdXEX-_MUsSLXnc3m-40M_tNO_N9ALe2NUVQ0bBMR6q66ahpxZzURGAGgSwFsuZg0KTe4a5f7Tw5j6PKKAev614YzRP6qckR0aMk-nuq43W0-Yjl6drK5E7McCi8bw9dz8iyY8LTlm14TbfV73k9bnDuct_wB24ZcQeG60b9YQu2EUbXdNL23KSulOj3ldI-hJ0-7rZMjyD39VKAfb5WXivAXjf74V2AXV2hKRMczLwwOYa3Aab_4YIh3sSYzqKYltMzs5UeNE0wRUuUFuVgkl5tzCIi0YjUiuubYSIsV-RMbE5SaWw-Wwg2VSpiH5q4lZGEwkKEySw5gZt2a8g7Jp5i_GOyMfc3B7ZPIb8Ml-oMWEkpqxyoStUhlnurLsrCDhC4KlKgFmJyDsW_9yn-N3kBB2R-KqKy7EvIp_G7usLrOhXX2s7fvGKdQg
link.rule.ids 230,309,783,888,25577,76883
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4gPvCmqFF8rYnprRHaAuXQGNlCUKEQgoYbYcs2YoBWWjXx1zuzgHjR6-5ms4_M7DftzPcBXJvGCEFFxdAtX9q6JUdFfVgWgR4Efj7wyxY6TaodbnmlxpP10C_2U_C6qoVRPKGfihwRLcpHe0-Uv47WH7FclVsZ34gxNoW39Z7jasvomPC0YWpu1al12m6ba5w73NO8rlNA3IHuumLfbcAmQmxbhUrPVapKiX4_KfU92OrgbLNkH1JfL1nI8JXyWhZ2Wssf3lnYVhmafoyNSyuMD-Cti-F_OGWIN9Gns2hOw2nNbKEHTR1M0hCpRDmYT1c7ZxGRaERywfXNMBD2F-RMbEJSaWwyngo2kjJiH4q4lZGEwlSE8Tg-hKt6rccbOu5i8HNkA-6tN2weQXoWzuQxsLyURiGQxZJFLPeGLQrCDBC4SlKgFmJ4Arm_58n913kJmUav1Rw0773HU9ilq6CEKsM8g3Qyf5fn-HQn4kKd-TdFoKAy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Random+forest+prediction+method+for+endometrial+cancer+postoperative+concurrent+lower+limb+deep+venous+thrombosis&rft.inventor=WANG+DONGHONG&rft.inventor=XIANG+XIAORONG&rft.inventor=YANG+XU&rft.inventor=LIU+JUN&rft.inventor=XIE+QIAN&rft.inventor=CHEN+YU&rft.inventor=GUO+MIN&rft.inventor=HU+XINGXU&rft.inventor=MENG+ZEYU&rft.inventor=WANG+QIAN&rft.inventor=TIAN+KUNMING&rft.inventor=XIA+QIAN&rft.date=2023-06-23&rft.externalDBID=A&rft.externalDocID=CN116313098A