Linear ground feature repetition type classification method based on spatial relation coding

The invention discloses a linear ground feature repetition type classification method based on spatial relation coding, which comprises the following steps: identifying bus route repetition types, classifying the route repetition types, obtaining various spatial relation types through abstraction so...

Full description

Saved in:
Bibliographic Details
Main Authors SUN HAO, QU HUA, PU XIUXIA, LI JUNHUI, DENG JIERONG, WANG HONGGANG, GUO JIANGUO, ZHANG YANGCUN, ZHENG DONGDONG
Format Patent
LanguageChinese
English
Published 16.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The invention discloses a linear ground feature repetition type classification method based on spatial relation coding, which comprises the following steps: identifying bus route repetition types, classifying the route repetition types, obtaining various spatial relation types through abstraction so as to determine the spatial relation of bus routes, and then combining with a corresponding feature extraction mode so as to determine the spatial relation of the bus routes. The method comprises the following steps: constructing a deep learning model, completing identification of different relation types by adopting a loss calculation method, constructing the deep learning model, designing to extract trajectory features through a bidirectional LSTM, and adding two full connection layers Lear1 and Lear2 to further process the trajectory features extracted by the BiLSTM so as to obtain more suitable vector representation. Through loss calculation, optimization of the weight and model training of the whole classific
AbstractList The invention discloses a linear ground feature repetition type classification method based on spatial relation coding, which comprises the following steps: identifying bus route repetition types, classifying the route repetition types, obtaining various spatial relation types through abstraction so as to determine the spatial relation of bus routes, and then combining with a corresponding feature extraction mode so as to determine the spatial relation of the bus routes. The method comprises the following steps: constructing a deep learning model, completing identification of different relation types by adopting a loss calculation method, constructing the deep learning model, designing to extract trajectory features through a bidirectional LSTM, and adding two full connection layers Lear1 and Lear2 to further process the trajectory features extracted by the BiLSTM so as to obtain more suitable vector representation. Through loss calculation, optimization of the weight and model training of the whole classific
Author DENG JIERONG
WANG HONGGANG
PU XIUXIA
ZHENG DONGDONG
SUN HAO
LI JUNHUI
ZHANG YANGCUN
GUO JIANGUO
QU HUA
Author_xml – fullname: SUN HAO
– fullname: QU HUA
– fullname: PU XIUXIA
– fullname: LI JUNHUI
– fullname: DENG JIERONG
– fullname: WANG HONGGANG
– fullname: GUO JIANGUO
– fullname: ZHANG YANGCUN
– fullname: ZHENG DONGDONG
BookMark eNqNizsKAjEURVNo4W8PcQGC42ewlUGxECtLYXgmN2MgvoQkU7h7g7oAq8s9nDMWA_aMkbidLYOi7KLvWUsDyn2EjAjINlvPMr8CpHKUkjVW0Yc9kR9eyzslaFl-CoWTK5n7Cspry91UDA25hNlvJ2J-PFyb0wLBtyiRAiO3zaWqtst6Ve82-_U_zhtJxD4n
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
DocumentTitleAlternate 一种基于空间关系编码的线状地物重复类型分类方法
ExternalDocumentID CN115062684A
GroupedDBID EVB
ID FETCH-epo_espacenet_CN115062684A3
IEDL.DBID EVB
IngestDate Fri Jul 19 14:50:31 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_CN115062684A3
Notes Application Number: CN202210462501
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220916&DB=EPODOC&CC=CN&NR=115062684A
ParticipantIDs epo_espacenet_CN115062684A
PublicationCentury 2000
PublicationDate 20220916
PublicationDateYYYYMMDD 2022-09-16
PublicationDate_xml – month: 09
  year: 2022
  text: 20220916
  day: 16
PublicationDecade 2020
PublicationYear 2022
RelatedCompanies ZHENGZHOU TIAMAES TECHNOLOGY CO., LTD
RelatedCompanies_xml – name: ZHENGZHOU TIAMAES TECHNOLOGY CO., LTD
Score 3.552233
Snippet The invention discloses a linear ground feature repetition type classification method based on spatial relation coding, which comprises the following steps:...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
Title Linear ground feature repetition type classification method based on spatial relation coding
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220916&DB=EPODOC&locale=&CC=CN&NR=115062684A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD7MeX3Tqei8EEH6Vlwv9vJQxKUbQ1g3ZMoehNE2KVOkG2tF8Nd7TtY5X_QxCYTkkJPvJPnOF4BrIzaFcD1bN2Mv021L-LovDE9vZaYUuFWalkP5zv3I6T3ZD-PbcQ3eVrkwSif0U4kjokel6O-l2q_n60usUHEri5vkFatmd91REGrV6dg0Ef4cLWwHneEgHHCN84BHWvQYUODjkLLJ_QZsYhjtkjd0ntuUlTL_DSndfdgaYm95eQC1r2kDdvnq57UG7PSrB-8GbCuGZlpgZeWFxSG84AESFyijjIxcsEwqcU62kHO5lB5idLHKUgqMiQmk5sOWf0Uzgi3BsFwQlzp-Z4uKDsfSGeHYEVx1OyPe03HAkx_rTHi0npt1DPV8lssTYJaMEb4zw3eFsFuZ46WpLfzEklYSe7GbnULz736a_zWewR5ZmkgThnMO9XLxIS8QmcvkUpn0GzX3lJg
link.rule.ids 230,309,783,888,25576,76882
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5qfdSbVovW1wqSW7B5mCaHIDZpqdqmRar0IJQku0FF0tJEBH-9M9vUetFjNrDsDjv7ze5-8w3AhRbqnDdtU9VDO1FNgzuqwzVbbSS64LhV6oZF-c79wOo-mnfjq3EJ3pa5MFIn9FOKI6JHxejvudyvZ6tLLF9yK7PL6BWbptedkesrxelY1xH-LMVvue3hwB94iue5XqAEDy4FPhYpm9yswTqG2DZVO2g_tSgrZfYbUjo7sDHE3tJ8F0pfL1WoeMvKa1XY6hcP3lXYlAzNOMPGwguzPXjGAyQuUEYZGSlniZDinGwuZmIhPcToYpXFFBgTE0jOhy1qRTOCLc7wOyMudfjO5gUdjsVTwrF9OO-0R15XxQFPfqwz8YLV3IwalNNpKg6AGSJE-E40p8m52UgsO45N7kSGMKLQDpvJIdT_7qf-388zqHRH_d6kdxvcH8E2WZ0IFJp1DOV8_iFOEKXz6FSa9xtWgJeI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Linear+ground+feature+repetition+type+classification+method+based+on+spatial+relation+coding&rft.inventor=SUN+HAO&rft.inventor=QU+HUA&rft.inventor=PU+XIUXIA&rft.inventor=LI+JUNHUI&rft.inventor=DENG+JIERONG&rft.inventor=WANG+HONGGANG&rft.inventor=GUO+JIANGUO&rft.inventor=ZHANG+YANGCUN&rft.inventor=ZHENG+DONGDONG&rft.date=2022-09-16&rft.externalDBID=A&rft.externalDocID=CN115062684A