Image super-resolution reconstruction method for electric power grid inspection robot
The invention discloses an image super-resolution reconstruction method for an electric power grid inspection robot. The image super-resolution reconstruction method comprises the steps of training an image super-resolution reconstruction network, inputting a natural image into the network, performi...
Saved in:
Main Authors | , |
---|---|
Format | Patent |
Language | Chinese English |
Published |
09.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The invention discloses an image super-resolution reconstruction method for an electric power grid inspection robot. The image super-resolution reconstruction method comprises the steps of training an image super-resolution reconstruction network, inputting a natural image into the network, performing up-sampling and reconstruction, outputting a high-definition electric power part image and the like. The image super-resolution reconstruction network comprises a front convolutional layer, a joint information extraction module, a hierarchical information fusion module and an image output module, a CS attention module and an IK attention module are arranged in the joint information extraction module, a feature map is modulated through an attention mechanism, the enhancement effects of the two attention mechanisms are superposed, and the image super-resolution reconstruction is realized. And the network has a good extraction effect on some fine high-frequency features in the low-resolution image. After super-reso |
---|---|
AbstractList | The invention discloses an image super-resolution reconstruction method for an electric power grid inspection robot. The image super-resolution reconstruction method comprises the steps of training an image super-resolution reconstruction network, inputting a natural image into the network, performing up-sampling and reconstruction, outputting a high-definition electric power part image and the like. The image super-resolution reconstruction network comprises a front convolutional layer, a joint information extraction module, a hierarchical information fusion module and an image output module, a CS attention module and an IK attention module are arranged in the joint information extraction module, a feature map is modulated through an attention mechanism, the enhancement effects of the two attention mechanisms are superposed, and the image super-resolution reconstruction is realized. And the network has a good extraction effect on some fine high-frequency features in the low-resolution image. After super-reso |
Author | HU YUANHUI ZHOU LISHA |
Author_xml | – fullname: HU YUANHUI – fullname: ZHOU LISHA |
BookMark | eNqNyr0KwjAUhuEMOvh3D8cLKNjWoasURRcnnUtMv9ZAmhNOErx9Qb0Ap5cXnqWaefZYqPtl0iMo5gApBJFdTpY9CQz7mCSbz05IT-5pYCE4mCTWUOAXhEaxPVkfA75S-MFpreaDdhGbX1dqezre2nOBwB1i0AYeqWuvZblvmqra1Yf6H_MGnpY78Q |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | 一种用于电力电网巡检机器人的图像超分辨率重建方法 |
ExternalDocumentID | CN114882203A |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_CN114882203A3 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 12:54:28 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | Chinese English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_CN114882203A3 |
Notes | Application Number: CN202210555077 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220809&DB=EPODOC&CC=CN&NR=114882203A |
ParticipantIDs | epo_espacenet_CN114882203A |
PublicationCentury | 2000 |
PublicationDate | 20220809 |
PublicationDateYYYYMMDD | 2022-08-09 |
PublicationDate_xml | – month: 08 year: 2022 text: 20220809 day: 09 |
PublicationDecade | 2020 |
PublicationYear | 2022 |
RelatedCompanies | ZHOU LISHA |
RelatedCompanies_xml | – name: ZHOU LISHA |
Score | 3.5449388 |
Snippet | The invention discloses an image super-resolution reconstruction method for an electric power grid inspection robot. The image super-resolution reconstruction... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDEDFOR ELSEWHERE CALCULATING CHECKING-DEVICES COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES GENERATING RANDOM NUMBERS IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS REGISTERING OR INDICATING THE WORKING OF MACHINES SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR TIME OR ATTENDANCE REGISTERS VOTING OR LOTTERY APPARATUS |
Title | Image super-resolution reconstruction method for electric power grid inspection robot |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220809&DB=EPODOC&locale=&CC=CN&NR=114882203A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_m_HzTqej8IIL0rbg17bo-FHHpxhTshmyyt5Gm3axgW9aK4F_vJes2X_Q1IUdy5L6Su_sB3Aqr7fBmYOmc2oZuztRDk2PqlM9ERNuB1eQqQdZv9cfm08SaVOB9VQuj-oR-qeaIKFEC5b1Q-jrbPGJ5KrcyvwtiHErveyPX08ro2DDQAXI0r-N2hwNvwDTGXOZr_osr3X60hQ36sAXb6EbbUhq6rx1ZlZL9Nim9Q9gZIrWkOILK91sN9tkKea0Ge8_lh3cNdlWGpshxsJTC_BjGjx-oBUj-mUULHcPl8vYQFdyuG8KSJTg0Qa-ULMFuYkEyCYpG5os4JHGyrLKUC9MgLU7gptcdsb6OO52u2TJl_uZQ9BSqSZpEZ0BEZFOJn9EQnJuUG1yyxaEtK6Jh2w7tc6j_Taf-3-QFHEhaKv3NuYQqnie6QpNcBNeKlz-7QpFz |
link.rule.ids | 230,309,783,888,25576,76876 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8gfuCbokbxqyZmb4uwbow9LEY2CCgMYsDwRroydCZuC5sx8a_3Wgb4oq9temkvva_27n4At9xoWKzmGyqjpqbqc_nQZOkqZXMe0IZv1JhMkPXqnbH-ODEmBXhf1cLIPqFfsjkiShRHec-kvk42j1iuzK1M7_wQh-L79sh2lTw61jR0gCzFbdqt4cAdOIrj2I6neM-2cPvRFlbpwxZso4ttCmlovTRFVUry26S0D2BniNSi7BAK329lKDkr5LUy7PXzD-8y7MoMTZ7iYC6F6RGMux-oBUj6mQQLFcPl_PYQGdyuG8KSJTg0Qa-ULMFuQk4SAYpGXhfhjITRsspSLIz9ODuGm3Zr5HRU3Ol0zZap420ORU-gGMVRcAqEByYV-BlVzphOmcYEWyxaNwI6a5gz8wwqf9Op_Dd5DaXOqN-b9rre0znsC7oyFc66gCKeLbhE85z5V5KvP7n1lGY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Image+super-resolution+reconstruction+method+for+electric+power+grid+inspection+robot&rft.inventor=HU+YUANHUI&rft.inventor=ZHOU+LISHA&rft.date=2022-08-09&rft.externalDBID=A&rft.externalDocID=CN114882203A |