Gravity energy storage power distribution method based on load prediction model
The invention discloses a gravity energy storage power distribution method based on a load prediction model, relates to a gravity energy storage power distribution technology, and aims to solve the problem of unreasonable gravity energy storage power distribution caused by low load prediction accura...
Saved in:
Main Authors | , , , , , , |
---|---|
Format | Patent |
Language | Chinese English |
Published |
15.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The invention discloses a gravity energy storage power distribution method based on a load prediction model, relates to a gravity energy storage power distribution technology, and aims to solve the problem of unreasonable gravity energy storage power distribution caused by low load prediction accuracy in the prior art. According to the invention, a load prediction model based on a GAN network is established; the load of the gravity energy storage system is predicted by using the load prediction model, and a prediction result is output; calculating a peak regulation demand value and a frequency modulation demand value based on the prediction result; obtaining the value of a peak regulation participation factor and the value of a frequency modulation participation factor by combining the constraint condition of the gravity energy storage system and adopting a particle swarm algorithm; a peak regulation participation factor and a frequency modulation participation factor are adopted to jointly construct a power |
---|---|
AbstractList | The invention discloses a gravity energy storage power distribution method based on a load prediction model, relates to a gravity energy storage power distribution technology, and aims to solve the problem of unreasonable gravity energy storage power distribution caused by low load prediction accuracy in the prior art. According to the invention, a load prediction model based on a GAN network is established; the load of the gravity energy storage system is predicted by using the load prediction model, and a prediction result is output; calculating a peak regulation demand value and a frequency modulation demand value based on the prediction result; obtaining the value of a peak regulation participation factor and the value of a frequency modulation participation factor by combining the constraint condition of the gravity energy storage system and adopting a particle swarm algorithm; a peak regulation participation factor and a frequency modulation participation factor are adopted to jointly construct a power |
Author | HAO WENBEI LIU ZHIYANG YIN JIALIN ZHANG RUI SONG HANGXUAN MU XINGHUA XU MINGYU |
Author_xml | – fullname: ZHANG RUI – fullname: HAO WENBEI – fullname: LIU ZHIYANG – fullname: YIN JIALIN – fullname: SONG HANGXUAN – fullname: XU MINGYU – fullname: MU XINGHUA |
BookMark | eNrjYmDJy89L5WTwdy9KLMssqVRIzUstSq9UKC7JL0pMT1UoyC9PLVJIySwuKcpMKi3JzM9TyE0tychPUUhKLE5NUQDyc_ITUxQKilJTMpMh8vkpqTk8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxGWhRSbyzn6GhibmpuaGBuaMxMWoAzJk5Jw |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | 一种基于负荷预测模型的重力储能功率分配方法 |
ExternalDocumentID | CN114757107A |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_CN114757107A3 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 14:58:31 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | Chinese English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_CN114757107A3 |
Notes | Application Number: CN202210499867 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220715&DB=EPODOC&CC=CN&NR=114757107A |
ParticipantIDs | epo_espacenet_CN114757107A |
PublicationCentury | 2000 |
PublicationDate | 20220715 |
PublicationDateYYYYMMDD | 2022-07-15 |
PublicationDate_xml | – month: 07 year: 2022 text: 20220715 day: 15 |
PublicationDecade | 2020 |
PublicationYear | 2022 |
RelatedCompanies | STATE GRID CORPORATION OF CHINA STATE GRID HEILONGJIANG ELECTRIC POWER COMPANY LIMITED ELECTRIC POWER RESEARCH INSTITUTE |
RelatedCompanies_xml | – name: STATE GRID HEILONGJIANG ELECTRIC POWER COMPANY LIMITED ELECTRIC POWER RESEARCH INSTITUTE – name: STATE GRID CORPORATION OF CHINA |
Score | 3.5329983 |
Snippet | The invention discloses a gravity energy storage power distribution method based on a load prediction model, relates to a gravity energy storage power... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
Title | Gravity energy storage power distribution method based on load prediction model |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220715&DB=EPODOC&locale=&CC=CN&NR=114757107A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5qfd60KlofrCC5BZvY7eMQxG5Si9C0SJXeSrq7oYo0IY0I_npntqn1osfdhWF3YPbbx8z3AVzXYs25dtt2HDddmxip7KiuazZXkYwV8Zc7VODcDxu95_rjmI9L8LaqhTE8oZ-GHBEjSmK852a_TtePWL7JrVzcTF-xK7nrjjzfKm7HrouIyS2_4wXDgT8QlhCeCK3wycNjf5MjmjbvN2CTaLeIZz946VBVSvobUrr7sDVEa_P8AEpfswrsipXyWgV2-sWHdwW2TYamXGBnEYWLQxg8ZBFJPjBtCvcYJTjitsBSUjxjiqwUKlZsKRDNCKsUw_Z7EimWZmR_OU5COEdw1Q1GomfjHCc_DpmIcL2c22Moz5O5PgE2bTXqXMk23tHw3N_SGIpSyZhLh8RonNopVP-2U_1v8Az2yLn0punwcyjn2Ye-QDDOp5fGi98kNY7r |
link.rule.ids | 230,308,780,885,25564,76547 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8ofuCbokbxqyZmb4tsUgYPi5EORIVBDBreyGi7qDGwwIyJf713ZYgv-tg2ubSX3P2u7d39AC5KseZcuzU7jj3Xpo5UdlTWJZurSMaK-pc7VODcCSutp_L9gA9W4G1RC2P6hH6a5ohoURLtPTX-Olk-YgUmt3J2OXrFqcl1s-8HVnY7dl1ETG4Fdb_R6wZdYQnhi9AKH30M-z2OaOrdrMKaR4y7FDo916kqJfkNKc1tWO-htHG6AytfLwXIiwXzWgE2O9mHdwE2TIamnOFkZoWzXejeTiOifGDaFO4xSnBEt8ASYjxjiqRkLFZsThDNCKsUw_H7JFIsmZL8-ToR4ezBebPRFy0b9zj8UchQhMvjXO1DbjwZ6wNgo2qlzJWs4R0N4_6qRlOUSsZcOkRG45QOofi3nOJ_i2eQb_U77WH7Lnw4gi1SNL1vOvwYcun0Q58gMKejU6PRbwHIkdw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Gravity+energy+storage+power+distribution+method+based+on+load+prediction+model&rft.inventor=ZHANG+RUI&rft.inventor=HAO+WENBEI&rft.inventor=LIU+ZHIYANG&rft.inventor=YIN+JIALIN&rft.inventor=SONG+HANGXUAN&rft.inventor=XU+MINGYU&rft.inventor=MU+XINGHUA&rft.date=2022-07-15&rft.externalDBID=A&rft.externalDocID=CN114757107A |