Emotional target extraction model based on multi-word embedding fusion and attention mechanism

The invention relates to an emotion target extraction model ME-ATT-CRF based on multi-word embedding fusion and an attention mechanism. According to the model, three types of word embedding are adopted for fusion, universal embedding and specific domain embedding are adopted, the condition that word...

Full description

Saved in:
Bibliographic Details
Main Authors DAI XIANHUA, KUANG LIJUAN
Format Patent
LanguageChinese
English
Published 31.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The invention relates to an emotion target extraction model ME-ATT-CRF based on multi-word embedding fusion and an attention mechanism. According to the model, three types of word embedding are adopted for fusion, universal embedding and specific domain embedding are adopted, the condition that word forms can reflect part-of-speech to a certain extent and then affect a labeling result is considered, morphological information of character-level convolutional learning words is added to enrich feature representation, and character-level features are extracted. Under the condition that no extra supervision is used, the model achieves a better effect. In addition, a self-attention mechanism is introduced into a hidden layer of the model, so that the model can automatically learn association and weights among different words in an input text, context semantics are fully understood, and more attention is paid to target words to be extracted. Experimental verification and comparison are carried out on the four data s
AbstractList The invention relates to an emotion target extraction model ME-ATT-CRF based on multi-word embedding fusion and an attention mechanism. According to the model, three types of word embedding are adopted for fusion, universal embedding and specific domain embedding are adopted, the condition that word forms can reflect part-of-speech to a certain extent and then affect a labeling result is considered, morphological information of character-level convolutional learning words is added to enrich feature representation, and character-level features are extracted. Under the condition that no extra supervision is used, the model achieves a better effect. In addition, a self-attention mechanism is introduced into a hidden layer of the model, so that the model can automatically learn association and weights among different words in an input text, context semantics are fully understood, and more attention is paid to target words to be extracted. Experimental verification and comparison are carried out on the four data s
Author KUANG LIJUAN
DAI XIANHUA
Author_xml – fullname: DAI XIANHUA
– fullname: KUANG LIJUAN
BookMark eNqNi7sOgkAQRSm08PUP4wdQENDE0hCMlZW1ZGAvuMnuLGGH6Ocboh9gdXNOzl0nCwmCVfKofFAbhB0pjz2U8NaR29mRDwaOGo4wNOPk1KavMBqCb2CMlZ66Kc4piyFWhXyPaJ8sNvptsuzYRex-u0n2l-peXlMMoUYcuIVA6_KWZcXhWJwO-Tn_p_kAwU4-0Q
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
DocumentTitleAlternate 一种基于多种词嵌入融合与注意力机制的情感目标抽取模型
ExternalDocumentID CN114564953A
GroupedDBID EVB
ID FETCH-epo_espacenet_CN114564953A3
IEDL.DBID EVB
IngestDate Fri Jul 19 12:58:14 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_CN114564953A3
Notes Application Number: CN202210185044
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220531&DB=EPODOC&CC=CN&NR=114564953A
ParticipantIDs epo_espacenet_CN114564953A
PublicationCentury 2000
PublicationDate 20220531
PublicationDateYYYYMMDD 2022-05-31
PublicationDate_xml – month: 05
  year: 2022
  text: 20220531
  day: 31
PublicationDecade 2020
PublicationYear 2022
RelatedCompanies MEDIUM-MOUNTAIN UNIVERSITY
RelatedCompanies_xml – name: MEDIUM-MOUNTAIN UNIVERSITY
Score 3.530922
Snippet The invention relates to an emotion target extraction model ME-ATT-CRF based on multi-word embedding fusion and an attention mechanism. According to the model,...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
Title Emotional target extraction model based on multi-word embedding fusion and attention mechanism
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220531&DB=EPODOC&locale=&CC=CN&NR=114564953A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8JAEJ0gft4UNYofWRPDrRFLW-DQGNmWEBMKMWg4SbbbbcBIIbTExF_vzBbEix67TTfdSWbe7O57MwC3TrMW2xIzN8u8F7hBcaQR1lXVEIgnIm46UjVJ4NwNnM6L9TS0hwV4X2thdJ3QT10cET1Kor9nOl7PN4dYnuZWpnfhBIdmD-2B61VWu2NSjWJQ8Vqu3-95PV7h3OVBJXh2Me23HeJSPm7BNqbRdfIG_7VFqpT5b0hpH8JOH2dLsiMofI1LsM_XnddKsNddXXiXYFczNGWKgysvTI_hzc9774gPlhO5GUbYRa5QYLq1DSNwihg9EmHQwPVGTE1DFRFUsXhJZ2RMJBGj8ppJ_qEiEfAknZ7ATdsf8I6Bvzz6sc-IB5vV1U6hmMwSdQbMMgUBsFJ2XLdk1BDKEiq0pGnKqqrKxjmU_56n_N_LCzggW-eX6JdQzBZLdYXYnIXX2qjfrPiVWw
link.rule.ids 230,309,783,888,25576,76876
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8JAEJ0gfuBNUaP4tSaGWyOWtsChMdKWoEIhBg0nyXa7jRgphJaY-Oud2YJ60WO36aY7ycyb3X1vBuDSalQjU2DmZujXHDcoltCCmqxoHPGERw1LyAYJnLu-1X4y7ofmMAdvKy2MqhP6oYojokcJ9PdUxevZzyGWq7iVyVUwxqHpTWtgu-Xl7phUoxhU3Kbt9Xtuzyk7ju34Zf_RxrTftIhLebsG65hi18gbvOcmqVJmvyGltQMbfZwtTnch9_lahIKz6rxWhK3u8sK7CJuKoSkSHFx6YbIHL17We4e_s4zIzTDCzjOFAlOtbRiBU8jokQiDGq43ZHISyJCgikULOiNjPA4ZldeMsw8liYDHyWQfLlrewGlr-Mujb_uMHP9nddUDyMfTWB4CM3ROACylGdUMEda5NLgMDKHroiIron4Epb_nKf338hwK7UG3M-rc-Q_HsE12zy7UTyCfzhfyFHE6Dc6Ugb8A2zyYTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Emotional+target+extraction+model+based+on+multi-word+embedding+fusion+and+attention+mechanism&rft.inventor=DAI+XIANHUA&rft.inventor=KUANG+LIJUAN&rft.date=2022-05-31&rft.externalDBID=A&rft.externalDocID=CN114564953A