Android malicious software detection feature extraction method based on deep reinforcement learning
The invention discloses an Android malicious software detection feature extraction method based on deep reinforcement learning, which relates to the technical field of software and information system security and comprises a sample acquisition step, a deep reinforcement learning model construction s...
Saved in:
Main Authors | , , , , , |
---|---|
Format | Patent |
Language | Chinese English |
Published |
13.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The invention discloses an Android malicious software detection feature extraction method based on deep reinforcement learning, which relates to the technical field of software and information system security and comprises a sample acquisition step, a deep reinforcement learning model construction step and a model training step. The method is used for carrying out dimensionality reduction on input features when Android malicious software is detected by using a machine learning method, creating an environment and constructing an intelligent agent by using a Double Deep Q-learning Network algorithm, continuously inputting selected features into an Android malicious software classifier to obtain detection accuracy as feedback in the interaction process of the intelligent agent and the environment, gradually optimizing a feature selection strategy, and carrying out feature selection according to the detection accuracy. And finally, redundant and irrelevant features are removed from the originally extracted androi |
---|---|
AbstractList | The invention discloses an Android malicious software detection feature extraction method based on deep reinforcement learning, which relates to the technical field of software and information system security and comprises a sample acquisition step, a deep reinforcement learning model construction step and a model training step. The method is used for carrying out dimensionality reduction on input features when Android malicious software is detected by using a machine learning method, creating an environment and constructing an intelligent agent by using a Double Deep Q-learning Network algorithm, continuously inputting selected features into an Android malicious software classifier to obtain detection accuracy as feedback in the interaction process of the intelligent agent and the environment, gradually optimizing a feature selection strategy, and carrying out feature selection according to the detection accuracy. And finally, redundant and irrelevant features are removed from the originally extracted androi |
Author | LI MEIJIN FANG ZHIYANG CHENG LUYU WU YINWEI YANG TAO ZENG QI |
Author_xml | – fullname: LI MEIJIN – fullname: ZENG QI – fullname: YANG TAO – fullname: WU YINWEI – fullname: CHENG LUYU – fullname: FANG ZHIYANG |
BookMark | eNqNijsOwjAQBV1Awe8OywEoAklBGUUgKir6aLGfwVKyjuyN4PhEggNQjWY0SzOTKFgYW4tLMTjquQs2xDFTjl5fnEAOCqshCnmwjlPBWxN_Uw99Rkd3znA0uQMGSgjiY7LoIUodOEmQx9rMPXcZmx9XZns-3ZrLDkNskQe2EGjbXIuiLI9Fta_qwz_PB11DQQI |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | 基于深度强化学习的安卓恶意软件检测特征提取方法 |
ExternalDocumentID | CN114491525A |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_CN114491525A3 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 14:31:54 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | Chinese English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_CN114491525A3 |
Notes | Application Number: CN202111543550 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220513&DB=EPODOC&CC=CN&NR=114491525A |
ParticipantIDs | epo_espacenet_CN114491525A |
PublicationCentury | 2000 |
PublicationDate | 20220513 |
PublicationDateYYYYMMDD | 2022-05-13 |
PublicationDate_xml | – month: 05 year: 2022 text: 20220513 day: 13 |
PublicationDecade | 2020 |
PublicationYear | 2022 |
RelatedCompanies | SICHUAN UNIVERSITY |
RelatedCompanies_xml | – name: SICHUAN UNIVERSITY |
Score | 3.5284894 |
Snippet | The invention discloses an Android malicious software detection feature extraction method based on deep reinforcement learning, which relates to the technical... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
Title | Android malicious software detection feature extraction method based on deep reinforcement learning |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220513&DB=EPODOC&locale=&CC=CN&NR=114491525A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5qfd60KlofrCC5BRu7ScwhiE1aitC0SJXeSvelFUxLEin4653dptaLHncXht2Beezu980AXPvUow2pJjajlNuUBtJmGKVsJpgjFW8oRjUbuZd43Wf6OHJHFXhfcWFMndCFKY6IFsXR3gvjr-frR6zYYCvzGzbFqdl9ZxjGVnk71qxRp2nFrbA96Mf9yIqiMEqs5CnEtJ8GutfPwwZsYhrta2tov7Q0K2X-O6R09mFrgNLS4gAqX2812I1WnddqsNMrP7xrsG0QmjzHydIK80PgGoU4mwrygUk01yBWkqM3XUwySYQsDLgqJUqamp0EvW-2ZC-QZbtooiOXIDgWUs5JJk3xVG7eCUnZReL1CK467WHUtXHf4x8ljaNkfcTmMVTTWSpPgGA66jaocFWgfCodb8LuVOC7_q1gnsNcdgr1v-XU_1s8gz2tcP2T7jTPoVpkn_ICA3TBLo1mvwF4wJfM |
link.rule.ids | 230,309,783,888,25576,76876 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8gfuCbokbxqyZmb4tMus09LEY2CCoMYtDwRta1U0wcZJsh8a_3Wob4oo9tk0t7yX20_f3uAC5tatG6iEOdURrplDpCZxildMaZIeKoHjMq2ci9wOo804eROSrB-5ILo-qEzlVxRLSoCO09V_56tnrE8hW2MrtiE5ya3raHrq8Vt2PJGjUamt90W4O-3_c0z3O9QAueXEz7qSN7_dytwTqm2La0htZLU7JSZr9DSnsHNgYoLcl3ofT1VoWKt-y8VoWtXvHhXYVNhdCMMpwsrDDbg0iiEKcTTj4wiY4kiJVk6E3nYSoIF7kCVyUkFqpmJ0Hvmy7YC2TRLprIyMUJjrkQM5IKVTw1Uu-EpOgi8boPF-3W0OvouO_xj5LGXrA6YuMAysk0EYdAMB0165SbsRPbVBhWyG5ixzbta84sg5nsCGp_y6n9t3gOlc6w1x1374PHY9iWype_6kbjBMp5-ilOMVjn7Exp-RvEfZq_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Android+malicious+software+detection+feature+extraction+method+based+on+deep+reinforcement+learning&rft.inventor=LI+MEIJIN&rft.inventor=ZENG+QI&rft.inventor=YANG+TAO&rft.inventor=WU+YINWEI&rft.inventor=CHENG+LUYU&rft.inventor=FANG+ZHIYANG&rft.date=2022-05-13&rft.externalDBID=A&rft.externalDocID=CN114491525A |