Wind turbine generator health assessment method based on improved stack type self-coding

The invention discloses a wind turbine generator health assessment method based on improved stack type self-coding, and relates to the technical field of wind power generation, and the method comprises the following steps: S1, obtaining a training data set: carrying out the cleaning of the operation...

Full description

Saved in:
Bibliographic Details
Main Authors GAO DELAN, SHI RUXIN, CAO QINGCAI, WANG JUAN, TADAO, ZHANG JIANXIN, LIU XIANRONG, CAO SHANQIAO, ZHANG SHUXIANG, WU LIDONG, XUN JIAMENG, ZHANG SHUXIAO, XU ZHIXUAN, GUO XUFENG, ZHANG LIXING
Format Patent
LanguageChinese
English
Published 29.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The invention discloses a wind turbine generator health assessment method based on improved stack type self-coding, and relates to the technical field of wind power generation, and the method comprises the following steps: S1, obtaining a training data set: carrying out the cleaning of the operation data of a wind turbine generator, and then carrying out the linear normalization processing, and obtaining effective training data and test data, s2, constructing a plurality of stack-type self-encoding models; S3, training each stack-type self-encoding model; S2, constructing a plurality of stack-type self-encoding models; S3, training each stack-type self-encoding model; s4, integrating and extracting depth features of the training data set; and S5, taking the trained reference model as a generator on-line state detector, inputting the volume data into the reference model, and obtaining and outputting the health degree of the generator of the wind turbine generator in each time period. The accuracy is improved o
AbstractList The invention discloses a wind turbine generator health assessment method based on improved stack type self-coding, and relates to the technical field of wind power generation, and the method comprises the following steps: S1, obtaining a training data set: carrying out the cleaning of the operation data of a wind turbine generator, and then carrying out the linear normalization processing, and obtaining effective training data and test data, s2, constructing a plurality of stack-type self-encoding models; S3, training each stack-type self-encoding model; S2, constructing a plurality of stack-type self-encoding models; S3, training each stack-type self-encoding model; s4, integrating and extracting depth features of the training data set; and S5, taking the trained reference model as a generator on-line state detector, inputting the volume data into the reference model, and obtaining and outputting the health degree of the generator of the wind turbine generator in each time period. The accuracy is improved o
Author GUO XUFENG
GAO DELAN
WU LIDONG
ZHANG LIXING
ZHANG SHUXIANG
ZHANG JIANXIN
CAO QINGCAI
XUN JIAMENG
CAO SHANQIAO
LIU XIANRONG
WANG JUAN
ZHANG SHUXIAO
XU ZHIXUAN
TADAO
SHI RUXIN
Author_xml – fullname: GAO DELAN
– fullname: SHI RUXIN
– fullname: CAO QINGCAI
– fullname: WANG JUAN
– fullname: TADAO
– fullname: ZHANG JIANXIN
– fullname: LIU XIANRONG
– fullname: CAO SHANQIAO
– fullname: ZHANG SHUXIANG
– fullname: WU LIDONG
– fullname: XUN JIAMENG
– fullname: ZHANG SHUXIAO
– fullname: XU ZHIXUAN
– fullname: GUO XUFENG
– fullname: ZHANG LIXING
BookMark eNqNjTsKwkAQQLfQwt8dxgMIBgOpJShWVoJ2YZKdJIvJzLIzCt7eFB7A6r3iwVu6GQvTwj3ugT3YK9WBCTpiSmiSoCccrAdUJdWR2GAk68VDjUoehCGMMcl7cjVsnmCfSKA0tLtGfOBu7eYtDkqbH1duez7dysuOolSkEZvpZVV5zbI8z4pinx8P_zRfCSY8Sw
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
DocumentTitleAlternate 一种基于改进栈式自编码的风电机组发电机健康评估方法
ExternalDocumentID CN114417704A
GroupedDBID EVB
ID FETCH-epo_espacenet_CN114417704A3
IEDL.DBID EVB
IngestDate Fri Jul 19 14:33:25 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_CN114417704A3
Notes Application Number: CN202111589047
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220429&DB=EPODOC&CC=CN&NR=114417704A
ParticipantIDs epo_espacenet_CN114417704A
PublicationCentury 2000
PublicationDate 20220429
PublicationDateYYYYMMDD 2022-04-29
PublicationDate_xml – month: 04
  year: 2022
  text: 20220429
  day: 29
PublicationDecade 2020
PublicationYear 2022
RelatedCompanies CHINESE TANG GROUP NEW ENERGY SCIENCE AND TECHNOLOGY RESEARCH INSTITUTE LIMITED COMPANY
RelatedCompanies_xml – name: CHINESE TANG GROUP NEW ENERGY SCIENCE AND TECHNOLOGY RESEARCH INSTITUTE LIMITED COMPANY
Score 3.5250092
Snippet The invention discloses a wind turbine generator health assessment method based on improved stack type self-coding, and relates to the technical field of wind...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
Title Wind turbine generator health assessment method based on improved stack type self-coding
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220429&DB=EPODOC&locale=&CC=CN&NR=114417704A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5qfd60KlofrCC5BdNkm5hDELtpKIJpkaq9lSbZ1qokxUQEf70z27T1orewgWV3ltlvvnktwKXdtJLIGLm6dLmpUymkHiGQ6hxN66QZcQoVUbZFaHce-d2gOajA66IWRvUJ_VLNEVGjYtT3Qt3Xs5UTy1e5lflVNMWh7Cboe75WsmPTpPtV81teu9f1u0ITwhOhFj54DSIOjmPw2zVYRzPaIW1oP7WoKmX2G1KCXdjo4WxpsQeV75cabIvFy2s12LovA9412FQZmnGOg6UW5vsweEYizRArkNVKNlGNo5E6s3lNIxstm22y-fvQjKAqYVnKpsqFgN9oE8ZvjPyvLJfvYz3OCMMO4CJo90VHx8UOl5IZinC1L-sQqmmWyiNg7nXDSBwncU3Dorily6W0uT2KOR7ZOGocQ_3veer__TyBHZIyhVNM9xSqxcenPENULqJzJc4freCRSw
link.rule.ids 230,309,783,888,25576,76882
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4gPvCmqFF8rYnprbGUpaWHxsgWggqFGFRuhLaLoqYltsbEX-_M8tCL3pptsmlnM_vNN0-Ac6taiQJj5OjS4aZOpZB6gECqczSto2rAKVRE2Ra-1brnN4PqIAcvi1oY1Sf0UzVHRI0KUd8zdV9Pf5xYnsqtTC-CCS4ll82-62lzdmyadL9qXt1t9LpeV2hCuMLX_Du3TMTBtg1-tQKraGLXaNpB46FOVSnT35DS3IK1Hu4WZ9uQ-3ouQkEsJq8VYaMzD3gXYV1laIYpLs61MN2BwSMSaYZYgaxWsifVOBqpM5vVNLLRstkmm82HZgRVEUtiNlEuBHxGmzB8ZeR_Zal8G-thQhi2C2fNRl-0dPzY4VIyQ-H__FdlD_JxEst9YE6tbES2HTmmUaG4pcOltLg1Cjke2TgoH0Dp731K_708hUKr32kP29f-7SFsksQptGI6R5DP3j_kMSJ0Fpwo0X4DpsGUOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Wind+turbine+generator+health+assessment+method+based+on+improved+stack+type+self-coding&rft.inventor=GAO+DELAN&rft.inventor=SHI+RUXIN&rft.inventor=CAO+QINGCAI&rft.inventor=WANG+JUAN&rft.inventor=TADAO&rft.inventor=ZHANG+JIANXIN&rft.inventor=LIU+XIANRONG&rft.inventor=CAO+SHANQIAO&rft.inventor=ZHANG+SHUXIANG&rft.inventor=WU+LIDONG&rft.inventor=XUN+JIAMENG&rft.inventor=ZHANG+SHUXIAO&rft.inventor=XU+ZHIXUAN&rft.inventor=GUO+XUFENG&rft.inventor=ZHANG+LIXING&rft.date=2022-04-29&rft.externalDBID=A&rft.externalDocID=CN114417704A