Wind turbine generator health assessment method based on improved stack type self-coding
The invention discloses a wind turbine generator health assessment method based on improved stack type self-coding, and relates to the technical field of wind power generation, and the method comprises the following steps: S1, obtaining a training data set: carrying out the cleaning of the operation...
Saved in:
Main Authors | , , , , , , , , , , , , , , |
---|---|
Format | Patent |
Language | Chinese English |
Published |
29.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The invention discloses a wind turbine generator health assessment method based on improved stack type self-coding, and relates to the technical field of wind power generation, and the method comprises the following steps: S1, obtaining a training data set: carrying out the cleaning of the operation data of a wind turbine generator, and then carrying out the linear normalization processing, and obtaining effective training data and test data, s2, constructing a plurality of stack-type self-encoding models; S3, training each stack-type self-encoding model; S2, constructing a plurality of stack-type self-encoding models; S3, training each stack-type self-encoding model; s4, integrating and extracting depth features of the training data set; and S5, taking the trained reference model as a generator on-line state detector, inputting the volume data into the reference model, and obtaining and outputting the health degree of the generator of the wind turbine generator in each time period. The accuracy is improved o |
---|---|
AbstractList | The invention discloses a wind turbine generator health assessment method based on improved stack type self-coding, and relates to the technical field of wind power generation, and the method comprises the following steps: S1, obtaining a training data set: carrying out the cleaning of the operation data of a wind turbine generator, and then carrying out the linear normalization processing, and obtaining effective training data and test data, s2, constructing a plurality of stack-type self-encoding models; S3, training each stack-type self-encoding model; S2, constructing a plurality of stack-type self-encoding models; S3, training each stack-type self-encoding model; s4, integrating and extracting depth features of the training data set; and S5, taking the trained reference model as a generator on-line state detector, inputting the volume data into the reference model, and obtaining and outputting the health degree of the generator of the wind turbine generator in each time period. The accuracy is improved o |
Author | GUO XUFENG GAO DELAN WU LIDONG ZHANG LIXING ZHANG SHUXIANG ZHANG JIANXIN CAO QINGCAI XUN JIAMENG CAO SHANQIAO LIU XIANRONG WANG JUAN ZHANG SHUXIAO XU ZHIXUAN TADAO SHI RUXIN |
Author_xml | – fullname: GAO DELAN – fullname: SHI RUXIN – fullname: CAO QINGCAI – fullname: WANG JUAN – fullname: TADAO – fullname: ZHANG JIANXIN – fullname: LIU XIANRONG – fullname: CAO SHANQIAO – fullname: ZHANG SHUXIANG – fullname: WU LIDONG – fullname: XUN JIAMENG – fullname: ZHANG SHUXIAO – fullname: XU ZHIXUAN – fullname: GUO XUFENG – fullname: ZHANG LIXING |
BookMark | eNqNjTsKwkAQQLfQwt8dxgMIBgOpJShWVoJ2YZKdJIvJzLIzCt7eFB7A6r3iwVu6GQvTwj3ugT3YK9WBCTpiSmiSoCccrAdUJdWR2GAk68VDjUoehCGMMcl7cjVsnmCfSKA0tLtGfOBu7eYtDkqbH1duez7dysuOolSkEZvpZVV5zbI8z4pinx8P_zRfCSY8Sw |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | 一种基于改进栈式自编码的风电机组发电机健康评估方法 |
ExternalDocumentID | CN114417704A |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_CN114417704A3 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 14:33:25 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | Chinese English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_CN114417704A3 |
Notes | Application Number: CN202111589047 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220429&DB=EPODOC&CC=CN&NR=114417704A |
ParticipantIDs | epo_espacenet_CN114417704A |
PublicationCentury | 2000 |
PublicationDate | 20220429 |
PublicationDateYYYYMMDD | 2022-04-29 |
PublicationDate_xml | – month: 04 year: 2022 text: 20220429 day: 29 |
PublicationDecade | 2020 |
PublicationYear | 2022 |
RelatedCompanies | CHINESE TANG GROUP NEW ENERGY SCIENCE AND TECHNOLOGY RESEARCH INSTITUTE LIMITED COMPANY |
RelatedCompanies_xml | – name: CHINESE TANG GROUP NEW ENERGY SCIENCE AND TECHNOLOGY RESEARCH INSTITUTE LIMITED COMPANY |
Score | 3.5250092 |
Snippet | The invention discloses a wind turbine generator health assessment method based on improved stack type self-coding, and relates to the technical field of wind... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
Title | Wind turbine generator health assessment method based on improved stack type self-coding |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220429&DB=EPODOC&locale=&CC=CN&NR=114417704A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5qfd60KlofrCC5BdNkm5hDELtpKIJpkaq9lSbZ1qokxUQEf70z27T1orewgWV3ltlvvnktwKXdtJLIGLm6dLmpUymkHiGQ6hxN66QZcQoVUbZFaHce-d2gOajA66IWRvUJ_VLNEVGjYtT3Qt3Xs5UTy1e5lflVNMWh7Cboe75WsmPTpPtV81teu9f1u0ITwhOhFj54DSIOjmPw2zVYRzPaIW1oP7WoKmX2G1KCXdjo4WxpsQeV75cabIvFy2s12LovA9412FQZmnGOg6UW5vsweEYizRArkNVKNlGNo5E6s3lNIxstm22y-fvQjKAqYVnKpsqFgN9oE8ZvjPyvLJfvYz3OCMMO4CJo90VHx8UOl5IZinC1L-sQqmmWyiNg7nXDSBwncU3Dorily6W0uT2KOR7ZOGocQ_3veer__TyBHZIyhVNM9xSqxcenPENULqJzJc4freCRSw |
link.rule.ids | 230,309,783,888,25576,76882 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4gPvCmqFF8rYnprbGUpaWHxsgWggqFGFRuhLaLoqYltsbEX-_M8tCL3pptsmlnM_vNN0-Ac6taiQJj5OjS4aZOpZB6gECqczSto2rAKVRE2Ra-1brnN4PqIAcvi1oY1Sf0UzVHRI0KUd8zdV9Pf5xYnsqtTC-CCS4ll82-62lzdmyadL9qXt1t9LpeV2hCuMLX_Du3TMTBtg1-tQKraGLXaNpB46FOVSnT35DS3IK1Hu4WZ9uQ-3ouQkEsJq8VYaMzD3gXYV1laIYpLs61MN2BwSMSaYZYgaxWsifVOBqpM5vVNLLRstkmm82HZgRVEUtiNlEuBHxGmzB8ZeR_Zal8G-thQhi2C2fNRl-0dPzY4VIyQ-H__FdlD_JxEst9YE6tbES2HTmmUaG4pcOltLg1Cjke2TgoH0Dp731K_708hUKr32kP29f-7SFsksQptGI6R5DP3j_kMSJ0Fpwo0X4DpsGUOw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Wind+turbine+generator+health+assessment+method+based+on+improved+stack+type+self-coding&rft.inventor=GAO+DELAN&rft.inventor=SHI+RUXIN&rft.inventor=CAO+QINGCAI&rft.inventor=WANG+JUAN&rft.inventor=TADAO&rft.inventor=ZHANG+JIANXIN&rft.inventor=LIU+XIANRONG&rft.inventor=CAO+SHANQIAO&rft.inventor=ZHANG+SHUXIANG&rft.inventor=WU+LIDONG&rft.inventor=XUN+JIAMENG&rft.inventor=ZHANG+SHUXIAO&rft.inventor=XU+ZHIXUAN&rft.inventor=GUO+XUFENG&rft.inventor=ZHANG+LIXING&rft.date=2022-04-29&rft.externalDBID=A&rft.externalDocID=CN114417704A |