Device parameter acquisition method and system based on neural network, and related components
The invention discloses a device parameter acquisition method, system and device based on a neural network and a computer readable storage medium, and the method comprises the steps: optimizing a corresponding device parameter for a target electromagnetic spectrum response through the neural network...
Saved in:
Main Authors | , , , , , , |
---|---|
Format | Patent |
Language | Chinese English |
Published |
12.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The invention discloses a device parameter acquisition method, system and device based on a neural network and a computer readable storage medium, and the method comprises the steps: optimizing a corresponding device parameter for a target electromagnetic spectrum response through the neural network composed of an inverse network, a discrimination network and a forward prediction network; the inverse network and the discriminant network are combined for adversarial training, the generated device parameters are optimized to be close to real parameters, meanwhile, a training data set needed for generating the adversarial network is small, hardware resources are saved, the robustness of the neural network is improved, then the device parameters which are generated by the inverse network and meet real conditions are input into the forward prediction network, and the robustness of the neural network is improved. According to the method, the inverse network and the forward prediction network are combined for traini |
---|---|
AbstractList | The invention discloses a device parameter acquisition method, system and device based on a neural network and a computer readable storage medium, and the method comprises the steps: optimizing a corresponding device parameter for a target electromagnetic spectrum response through the neural network composed of an inverse network, a discrimination network and a forward prediction network; the inverse network and the discriminant network are combined for adversarial training, the generated device parameters are optimized to be close to real parameters, meanwhile, a training data set needed for generating the adversarial network is small, hardware resources are saved, the robustness of the neural network is improved, then the device parameters which are generated by the inverse network and meet real conditions are input into the forward prediction network, and the robustness of the neural network is improved. According to the method, the inverse network and the forward prediction network are combined for traini |
Author | CHAO YINYIN DONG GANG YANG HONGBIN WANG BINQIANG LI RENGANG XU ZHE ZHAO YAQIAN |
Author_xml | – fullname: ZHAO YAQIAN – fullname: DONG GANG – fullname: WANG BINQIANG – fullname: LI RENGANG – fullname: XU ZHE – fullname: YANG HONGBIN – fullname: CHAO YINYIN |
BookMark | eNqNjDsOwjAQBV1Awe8OSw9SQmhSogCioqImWpyHsEhs43VA3B4LcQCqkd6M3lgNrLMYqfMWT6NBngN3iAjE-tEbMdE4S2m5uYbYNiRviejowoKGkrLoA7cJ8eXCffFtAlqOSWvX-fRuo0zV8MqtYPbjRM33u1N1WMK7GuJZIz3U1THP18WqLLNsU_zTfACfxj6D |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | 一种基于神经网络的器件参数获取方法、系统及相关组件 |
ExternalDocumentID | CN114329900A |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_CN114329900A3 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 14:32:54 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | Chinese English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_CN114329900A3 |
Notes | Application Number: CN202111450077 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220412&DB=EPODOC&CC=CN&NR=114329900A |
ParticipantIDs | epo_espacenet_CN114329900A |
PublicationCentury | 2000 |
PublicationDate | 20220412 |
PublicationDateYYYYMMDD | 2022-04-12 |
PublicationDate_xml | – month: 04 year: 2022 text: 20220412 day: 12 |
PublicationDecade | 2020 |
PublicationYear | 2022 |
RelatedCompanies | RAM ELECTRONIC INFORMATION INDUSTRY STOCK LIMITED COMPANY |
RelatedCompanies_xml | – name: RAM ELECTRONIC INFORMATION INDUSTRY STOCK LIMITED COMPANY |
Score | 3.5225894 |
Snippet | The invention discloses a device parameter acquisition method, system and device based on a neural network and a computer readable storage medium, and the... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
Title | Device parameter acquisition method and system based on neural network, and related components |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220412&DB=EPODOC&locale=&CC=CN&NR=114329900A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5qfd60WrQ-WEFyMmjTJE0PQewmpQhNi1TpybKbB1Y0rSZF8Nc7s2mtFz0FdpZlM_DtzCbffANwIVqRaBky0q0wSXTTEaYuMfLocSQdYTWMuFmnQuFeYHcfzLuRNSrBy7IWRumEfipxRERUiHjP1Xk9W33E8hS3MruSExya3nSGrqctbseGQfJRmtd2_UHf63ONc5cHWnDvYtrfoJP3-nYN1jGNbhIa_Mc2VaXMfoeUzi5sDHC1NN-D0tdzBbb5svNaBbZ6ix_eFdhUDM0ww8EFCrN9ePJiwjcj2e43orMwEb7PJwX7ihU9oZlII1bINDOKVBFDE4lXild8KOr3pZqjilnQTNzyaUq0igM47_hD3tVxy-Mf_4x5sHq7RhXKKc4-BEba8rG0RWQ1pSkNR9pOPab2YJghJbJlH0Ht73Vq_xmPYYd8rSvJwxMo5x_z-BRjcy7PlFO_AbsNlUQ |
link.rule.ids | 230,309,783,888,25576,76876 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4gPvCmqFF8rYnpyUbpi3JojGwhqFCIQcMJstuWiNGCUmLir3dmAfGipyY7m812km9ntv3mG4BzUY5E2ZCRboeDgW65wtIlRh49jqQrbNOIS0UqFG4GTv3Ruuva3Qy8LGphlE7opxJHRESFiPdUndfj5UcsX3ErJ5dyiEOj61rH87X57dgwSD5K8ytetd3yW1zj3OOBFjx4mPabdPJe3azAKqbYJUJD9alCVSnj3yGltgVrbVwtSbch8_WchxxfdF7Lw0Zz_sM7D-uKoRlOcHCOwskO9PyY8M1ItvuN6CxMhO_T4Yx9xWY9oZlIIjaTaWYUqSKGJhKvFK_4UNTvCzVHFbOgmbjlo4RoFbtwVqt2eF3HLfd__NPnwfLtzD3IJjh7Hxhpy8fSEZFdkpY0XOm4xZjag2GGNJBl5wAKf69T-M94Crl6p9noN26D-0PYJL_rSv7wCLLpxzQ-xjidyhPl4G_oVZg3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Device+parameter+acquisition+method+and+system+based+on+neural+network%2C+and+related+components&rft.inventor=ZHAO+YAQIAN&rft.inventor=DONG+GANG&rft.inventor=WANG+BINQIANG&rft.inventor=LI+RENGANG&rft.inventor=XU+ZHE&rft.inventor=YANG+HONGBIN&rft.inventor=CHAO+YINYIN&rft.date=2022-04-12&rft.externalDBID=A&rft.externalDocID=CN114329900A |