Bridge side falling behavior identification method based on depth understanding

The invention discloses a bridge side falling behavior identification method based on deep understanding, and the method employs a camera which monitors a large bridge all the time to capture a signal that a person falls from a bridge side, and gives out an alarm signal, thereby enabling the person...

Full description

Saved in:
Bibliographic Details
Main Authors CHENG XIAOGANG, NI JIE, XU FENGLEI, ZHANG BO, WANG ZHAOBIN, ZHU JIAXIANG, CAI CONGCONG, GAO BO
Format Patent
LanguageChinese
English
Published 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The invention discloses a bridge side falling behavior identification method based on deep understanding, and the method employs a camera which monitors a large bridge all the time to capture a signal that a person falls from a bridge side, and gives out an alarm signal, thereby enabling the person to be rescued in time. According to the system, a computer vision algorithm is embedded in a camera on a river bridge, and the system comprises a personnel railing crossing behavior monitoring module, a personnel falling monitoring module, a falling water spray monitoring module and a personnel floating detection and rescue area prediction module. According to the system, whether a person climbs over a river-crossing bridge handrail and falls from the bridge side is judged through cross validation of the first three modules, and if the person is detected, an alarm can be given and rescue can be called in time, so that the best rescue time is prevented from being missed; the rear two modules are used for predicting
AbstractList The invention discloses a bridge side falling behavior identification method based on deep understanding, and the method employs a camera which monitors a large bridge all the time to capture a signal that a person falls from a bridge side, and gives out an alarm signal, thereby enabling the person to be rescued in time. According to the system, a computer vision algorithm is embedded in a camera on a river bridge, and the system comprises a personnel railing crossing behavior monitoring module, a personnel falling monitoring module, a falling water spray monitoring module and a personnel floating detection and rescue area prediction module. According to the system, whether a person climbs over a river-crossing bridge handrail and falls from the bridge side is judged through cross validation of the first three modules, and if the person is detected, an alarm can be given and rescue can be called in time, so that the best rescue time is prevented from being missed; the rear two modules are used for predicting
Author ZHANG BO
CAI CONGCONG
WANG ZHAOBIN
GAO BO
ZHU JIAXIANG
XU FENGLEI
CHENG XIAOGANG
NI JIE
Author_xml – fullname: CHENG XIAOGANG
– fullname: NI JIE
– fullname: XU FENGLEI
– fullname: ZHANG BO
– fullname: WANG ZHAOBIN
– fullname: ZHU JIAXIANG
– fullname: CAI CONGCONG
– fullname: GAO BO
BookMark eNqNjDsOwjAQRF1Awe8OywGQSIiAFiIQFTT0kZOdJCuFtRUbzo8LDkA1mqd5MzcTdYqZeZxH4Q4UhEGtHQbRjmr09iNupAQ1SiuNjeKUXoi9Y6ptAFPqDB97eitjDNEqJ3dppuklYPXLhVlfL8_ytoF3FYK3DRSxKu9ZVuT7w_aYn3b_bL6UWTjj
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
DocumentTitleAlternate 基于深度理解的桥侧坠落行为识别方法
ExternalDocumentID CN114267082A
GroupedDBID EVB
ID FETCH-epo_espacenet_CN114267082A3
IEDL.DBID EVB
IngestDate Fri Jul 19 14:23:48 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_CN114267082A3
Notes Application Number: CN202111088471
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220401&DB=EPODOC&CC=CN&NR=114267082A
ParticipantIDs epo_espacenet_CN114267082A
PublicationCentury 2000
PublicationDate 20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 20220401
  day: 01
PublicationDecade 2020
PublicationYear 2022
RelatedCompanies NANJING POST AND TELECOM UNIVERSITY
NANJING PUBLIC SECURITY BUREAU
RelatedCompanies_xml – name: NANJING POST AND TELECOM UNIVERSITY
– name: NANJING PUBLIC SECURITY BUREAU
Score 3.519393
Snippet The invention discloses a bridge side falling behavior identification method based on deep understanding, and the method employs a camera which monitors a...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTING
COUNTING
PHYSICS
Title Bridge side falling behavior identification method based on depth understanding
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220401&DB=EPODOC&locale=&CC=CN&NR=114267082A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_m_HzTquj8IIL0rWi_24ciNm0ZwtohU_Y2mqZl86ErtkPwrzfJWrcXfcwFjtyRy-WS-90B3OeGZRa2SxSVujxA0XWFqIWmkNR2iKk5WSqq649ia_hmvEzNaQ8-OiyMqBP6JYojMovKmL034ryuNo9YgcitrB_IgpGWT9HEC-Q2OtY0tidVOfC9cJwECZYx9nAsx68eh4xaNvN3zzuwy67RNreG8N3nqJRq26VEx7A3ZtzK5gR633MJDnHXeU2Cg1H74S3BvsjQzGpGbK2wPoXEFygrxDttoiIVVbVRh7dHC9omAAkx0LpFNOLeiiI2pnnVzNFqG9NyBndROMFDha1x9quQGY434ujn0C-XZX4ByEr11DWJTszHzCiI5jpZQTOd2g51qOlYlzD4m8_gv8krOOLKXWesXEO_-VzlN8wZN-RWaPEHasaPIA
link.rule.ids 230,309,783,888,25576,76876
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLbGeIwbDBCMV5BQbxWsXfo4VIimrQZs7YQK2m1qmlYbh25inZD49SRZx3aBYxzJiq04jhN_NsBt1jFwbtpUbTNbBCi6rtJ2rqk0MS2KNStNZHX9fmh03zrPQzyswccKCyPrhH7J4ojcolJu76U8r2frRyxP5lbO7-iEk6YPQex4ShUdaxrfk23Fcx1_EHkRUQhxSKiEr46AjBom93ePW7DNr9imsAb_3RWolNmmSwkOYGfAuRXlIdS-x01okFXntSbs9asP7ybsygzNdM6JlRXOjyByJcoKiU6bKE9kVW20wtujCasSgKQYaNkiGglvxRAfs2xWjtFiE9NyDDeBH5Ouytc4-lXIiIRrcfQTqBfTIjsFZCR6YmOqU3yfdnKq2Vaas1RnpsUshi3jDFp_82n9N3kNjW7c7416T-HLOewLRS-zVy6gXn4uskvumEt6JTX6A03vkhM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Bridge+side+falling+behavior+identification+method+based+on+depth+understanding&rft.inventor=CHENG+XIAOGANG&rft.inventor=NI+JIE&rft.inventor=XU+FENGLEI&rft.inventor=ZHANG+BO&rft.inventor=WANG+ZHAOBIN&rft.inventor=ZHU+JIAXIANG&rft.inventor=CAI+CONGCONG&rft.inventor=GAO+BO&rft.date=2022-04-01&rft.externalDBID=A&rft.externalDocID=CN114267082A