Bridge side falling behavior identification method based on depth understanding
The invention discloses a bridge side falling behavior identification method based on deep understanding, and the method employs a camera which monitors a large bridge all the time to capture a signal that a person falls from a bridge side, and gives out an alarm signal, thereby enabling the person...
Saved in:
Main Authors | , , , , , , , |
---|---|
Format | Patent |
Language | Chinese English |
Published |
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The invention discloses a bridge side falling behavior identification method based on deep understanding, and the method employs a camera which monitors a large bridge all the time to capture a signal that a person falls from a bridge side, and gives out an alarm signal, thereby enabling the person to be rescued in time. According to the system, a computer vision algorithm is embedded in a camera on a river bridge, and the system comprises a personnel railing crossing behavior monitoring module, a personnel falling monitoring module, a falling water spray monitoring module and a personnel floating detection and rescue area prediction module. According to the system, whether a person climbs over a river-crossing bridge handrail and falls from the bridge side is judged through cross validation of the first three modules, and if the person is detected, an alarm can be given and rescue can be called in time, so that the best rescue time is prevented from being missed; the rear two modules are used for predicting |
---|---|
AbstractList | The invention discloses a bridge side falling behavior identification method based on deep understanding, and the method employs a camera which monitors a large bridge all the time to capture a signal that a person falls from a bridge side, and gives out an alarm signal, thereby enabling the person to be rescued in time. According to the system, a computer vision algorithm is embedded in a camera on a river bridge, and the system comprises a personnel railing crossing behavior monitoring module, a personnel falling monitoring module, a falling water spray monitoring module and a personnel floating detection and rescue area prediction module. According to the system, whether a person climbs over a river-crossing bridge handrail and falls from the bridge side is judged through cross validation of the first three modules, and if the person is detected, an alarm can be given and rescue can be called in time, so that the best rescue time is prevented from being missed; the rear two modules are used for predicting |
Author | ZHANG BO CAI CONGCONG WANG ZHAOBIN GAO BO ZHU JIAXIANG XU FENGLEI CHENG XIAOGANG NI JIE |
Author_xml | – fullname: CHENG XIAOGANG – fullname: NI JIE – fullname: XU FENGLEI – fullname: ZHANG BO – fullname: WANG ZHAOBIN – fullname: ZHU JIAXIANG – fullname: CAI CONGCONG – fullname: GAO BO |
BookMark | eNqNjDsOwjAQRF1Awe8OywGQSIiAFiIQFTT0kZOdJCuFtRUbzo8LDkA1mqd5MzcTdYqZeZxH4Q4UhEGtHQbRjmr09iNupAQ1SiuNjeKUXoi9Y6ptAFPqDB97eitjDNEqJ3dppuklYPXLhVlfL8_ytoF3FYK3DRSxKu9ZVuT7w_aYn3b_bL6UWTjj |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | 基于深度理解的桥侧坠落行为识别方法 |
ExternalDocumentID | CN114267082A |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_CN114267082A3 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 14:23:48 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | Chinese English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_CN114267082A3 |
Notes | Application Number: CN202111088471 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220401&DB=EPODOC&CC=CN&NR=114267082A |
ParticipantIDs | epo_espacenet_CN114267082A |
PublicationCentury | 2000 |
PublicationDate | 20220401 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 20220401 day: 01 |
PublicationDecade | 2020 |
PublicationYear | 2022 |
RelatedCompanies | NANJING POST AND TELECOM UNIVERSITY NANJING PUBLIC SECURITY BUREAU |
RelatedCompanies_xml | – name: NANJING POST AND TELECOM UNIVERSITY – name: NANJING PUBLIC SECURITY BUREAU |
Score | 3.519393 |
Snippet | The invention discloses a bridge side falling behavior identification method based on deep understanding, and the method employs a camera which monitors a... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTING COUNTING PHYSICS |
Title | Bridge side falling behavior identification method based on depth understanding |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220401&DB=EPODOC&locale=&CC=CN&NR=114267082A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_m_HzTquj8IIL0rWi_24ciNm0ZwtohU_Y2mqZl86ErtkPwrzfJWrcXfcwFjtyRy-WS-90B3OeGZRa2SxSVujxA0XWFqIWmkNR2iKk5WSqq649ia_hmvEzNaQ8-OiyMqBP6JYojMovKmL034ryuNo9YgcitrB_IgpGWT9HEC-Q2OtY0tidVOfC9cJwECZYx9nAsx68eh4xaNvN3zzuwy67RNreG8N3nqJRq26VEx7A3ZtzK5gR633MJDnHXeU2Cg1H74S3BvsjQzGpGbK2wPoXEFygrxDttoiIVVbVRh7dHC9omAAkx0LpFNOLeiiI2pnnVzNFqG9NyBndROMFDha1x9quQGY434ujn0C-XZX4ByEr11DWJTszHzCiI5jpZQTOd2g51qOlYlzD4m8_gv8krOOLKXWesXEO_-VzlN8wZN-RWaPEHasaPIA |
link.rule.ids | 230,309,783,888,25576,76876 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLbGeIwbDBCMV5BQbxWsXfo4VIimrQZs7YQK2m1qmlYbh25inZD49SRZx3aBYxzJiq04jhN_NsBt1jFwbtpUbTNbBCi6rtJ2rqk0MS2KNStNZHX9fmh03zrPQzyswccKCyPrhH7J4ojcolJu76U8r2frRyxP5lbO7-iEk6YPQex4ShUdaxrfk23Fcx1_EHkRUQhxSKiEr46AjBom93ePW7DNr9imsAb_3RWolNmmSwkOYGfAuRXlIdS-x01okFXntSbs9asP7ybsygzNdM6JlRXOjyByJcoKiU6bKE9kVW20wtujCasSgKQYaNkiGglvxRAfs2xWjtFiE9NyDDeBH5Ouytc4-lXIiIRrcfQTqBfTIjsFZCR6YmOqU3yfdnKq2Vaas1RnpsUshi3jDFp_82n9N3kNjW7c7416T-HLOewLRS-zVy6gXn4uskvumEt6JTX6A03vkhM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Bridge+side+falling+behavior+identification+method+based+on+depth+understanding&rft.inventor=CHENG+XIAOGANG&rft.inventor=NI+JIE&rft.inventor=XU+FENGLEI&rft.inventor=ZHANG+BO&rft.inventor=WANG+ZHAOBIN&rft.inventor=ZHU+JIAXIANG&rft.inventor=CAI+CONGCONG&rft.inventor=GAO+BO&rft.date=2022-04-01&rft.externalDBID=A&rft.externalDocID=CN114267082A |