Working condition monitoring and fault early warning method for coal mine frequency conversion local ventilator
The invention relates to a working condition monitoring and fault early warning method for a coal mine frequency conversion local ventilator, which comprises fault diagnosis and fault early warning, and is used for researching the monitoring, diagnosis and early warning of the running state of a min...
Saved in:
Main Authors | , , , , , , , |
---|---|
Format | Patent |
Language | Chinese English |
Published |
04.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The invention relates to a working condition monitoring and fault early warning method for a coal mine frequency conversion local ventilator, which comprises fault diagnosis and fault early warning, and is used for researching the monitoring, diagnosis and early warning of the running state of a mine main ventilator. By analyzing common fault mechanisms and characteristics of the mine main ventilator, a mine main ventilator equipment operation state monitoring scheme is formulated, and on the basis of a traditional BP neural network, a BP algorithm is optimized by using a particle swarm optimization (PSO) algorithm, so that the accuracy of fault diagnosis is improved. In motor fault type identification through PSO-BPNN, the algorithm convergence speed and the diagnosis precision are obviously better than those of BPNN, and the method can better adapt to motor fault diagnosis under actual working conditions. Through simulation experiment analysis, it can be obtained that the PSO-BPNN prediction method combined |
---|---|
AbstractList | The invention relates to a working condition monitoring and fault early warning method for a coal mine frequency conversion local ventilator, which comprises fault diagnosis and fault early warning, and is used for researching the monitoring, diagnosis and early warning of the running state of a mine main ventilator. By analyzing common fault mechanisms and characteristics of the mine main ventilator, a mine main ventilator equipment operation state monitoring scheme is formulated, and on the basis of a traditional BP neural network, a BP algorithm is optimized by using a particle swarm optimization (PSO) algorithm, so that the accuracy of fault diagnosis is improved. In motor fault type identification through PSO-BPNN, the algorithm convergence speed and the diagnosis precision are obviously better than those of BPNN, and the method can better adapt to motor fault diagnosis under actual working conditions. Through simulation experiment analysis, it can be obtained that the PSO-BPNN prediction method combined |
Author | ZHANG XUHUI WAN XIANG SHANG XINMANG SHI GANG WANG MIN SONG JINQUAN GUO WENFANG XUE XUSHENG |
Author_xml | – fullname: WAN XIANG – fullname: SHANG XINMANG – fullname: WANG MIN – fullname: SONG JINQUAN – fullname: SHI GANG – fullname: GUO WENFANG – fullname: XUE XUSHENG – fullname: ZHANG XUHUI |
BookMark | eNqNjD0KwkAQhbfQwr87jAewCFHBUoJiZSVYhmEz0cXNTJxsIrm9u-ABrB58771vbiYsTDMjd9GX4wdY4coFJwyNsAuiCSJXUGPvAxCqH-GDyok3FJ4SK9H4Qw-NY4Ja6d0T2zG5BtIuybzY2A_EwXmM1qWZ1ug7Wv1yYdbn0624bKiVkroWLTGFsrhm2TbLD_t8d8z_2XwB641FoQ |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | 煤矿变频局部通风机工况监测与故障预警方法 |
ExternalDocumentID | CN114139635A |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_CN114139635A3 |
IEDL.DBID | EVB |
IngestDate | Fri Oct 25 05:41:28 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | Chinese English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_CN114139635A3 |
Notes | Application Number: CN202111469203 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220304&DB=EPODOC&CC=CN&NR=114139635A |
ParticipantIDs | epo_espacenet_CN114139635A |
PublicationCentury | 2000 |
PublicationDate | 20220304 |
PublicationDateYYYYMMDD | 2022-03-04 |
PublicationDate_xml | – month: 03 year: 2022 text: 20220304 day: 04 |
PublicationDecade | 2020 |
PublicationYear | 2022 |
RelatedCompanies | XIXIAN'AN RELOADING KOREAN COAL MINE MACHINERY LIMITED COMPANY XI'AN SCIENCE AND TECHNOLOGY UNIVERSITY |
RelatedCompanies_xml | – name: XI'AN SCIENCE AND TECHNOLOGY UNIVERSITY – name: XIXIAN'AN RELOADING KOREAN COAL MINE MACHINERY LIMITED COMPANY |
Score | 3.5146377 |
Snippet | The invention relates to a working condition monitoring and fault early warning method for a coal mine frequency conversion local ventilator, which comprises... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
Title | Working condition monitoring and fault early warning method for coal mine frequency conversion local ventilator |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220304&DB=EPODOC&locale=&CC=CN&NR=114139635A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4gPm-KGsVHxsT01piW8uihMbKFEBMKMWi4EdruBg0UAiVEf72zQxEvet2m2-wkX-ebmW9mAe4jK5JKWq6pIlU1HWVLM3TL0rStCkGv7NjVWDc4t4NK69V57pf7OfjY9MLwnNAVD0ckREWE95T_17NtEstnbeXiIXynpeljs-f5RhYd27au9Bl-3Wt0O35HGEJ4IjCCF49oP3Ed8q5PO7BLNLrKQdtbXXelzH67lOYx7HVptyQ9gdzXqACHYnPzWgEO2lnBuwD7rNCMFrSYoXBxCtMsw40Uy8YsucIJQ1Pn6HCYxKiGy3GKUg8vxtU694Hru6KRSCq9NxzjhD6Aar6WUn8iy885d4bs35CFkGMdk5_BXbPREy2TzjD4MdhABNvjls4hn0wTeQFoKYqcyfpRJSYeonQFsObWbDe0alKWbHUJxb_3Kf738AqOtPFZm-VcQz6dL-UNOes0vGUrfwMAA5vF |
link.rule.ids | 230,309,783,888,25577,76883 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4gPvCmKFF8rYnprTEtBdpDY2QLQYVCDBpuhLa7UQOFQAnRX-_sUMSLXrfpbnY2387rm1mAm9AIhRSGo8tQVnVLmkIPnLLQTaOC0CtbZjVSBc5tv9J8sR775X4GPta1MNQndEnNERFRIeI9oft6ugliecStnN8G7zg0uWv0XE9LvWPTVJk-zau59W7H63CNc5f7mv_sotmPtg5q1_st2EYT2yZX6bWmqlKmv1VK4wB2ujhbnBxC5ustDzm-fnktD3vtNOGdh11iaIZzHExROD-CSRrhZujLRkS5YmOCporRsWEcMTlcjBImVPNitlzFPtjqrWiGRir-NxyxMS7A5GxFpf5kRD-n2Bkj_caICDlSPvkxXDfqPd7UcQ-DH4ENuL_ZbqkA2XgSixNghkTPGaUfViK0Q6TKANqObTqBYQtRMuUpFP-ep_jfxyvINXvt1qD14D-dwb46COJpWeeQTWYLcYGKOwkuSeLfd4aetQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Working+condition+monitoring+and+fault+early+warning+method+for+coal+mine+frequency+conversion+local+ventilator&rft.inventor=WAN+XIANG&rft.inventor=SHANG+XINMANG&rft.inventor=WANG+MIN&rft.inventor=SONG+JINQUAN&rft.inventor=SHI+GANG&rft.inventor=GUO+WENFANG&rft.inventor=XUE+XUSHENG&rft.inventor=ZHANG+XUHUI&rft.date=2022-03-04&rft.externalDBID=A&rft.externalDocID=CN114139635A |