Working condition monitoring and fault early warning method for coal mine frequency conversion local ventilator

The invention relates to a working condition monitoring and fault early warning method for a coal mine frequency conversion local ventilator, which comprises fault diagnosis and fault early warning, and is used for researching the monitoring, diagnosis and early warning of the running state of a min...

Full description

Saved in:
Bibliographic Details
Main Authors WAN XIANG, SHANG XINMANG, WANG MIN, SONG JINQUAN, SHI GANG, GUO WENFANG, XUE XUSHENG, ZHANG XUHUI
Format Patent
LanguageChinese
English
Published 04.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The invention relates to a working condition monitoring and fault early warning method for a coal mine frequency conversion local ventilator, which comprises fault diagnosis and fault early warning, and is used for researching the monitoring, diagnosis and early warning of the running state of a mine main ventilator. By analyzing common fault mechanisms and characteristics of the mine main ventilator, a mine main ventilator equipment operation state monitoring scheme is formulated, and on the basis of a traditional BP neural network, a BP algorithm is optimized by using a particle swarm optimization (PSO) algorithm, so that the accuracy of fault diagnosis is improved. In motor fault type identification through PSO-BPNN, the algorithm convergence speed and the diagnosis precision are obviously better than those of BPNN, and the method can better adapt to motor fault diagnosis under actual working conditions. Through simulation experiment analysis, it can be obtained that the PSO-BPNN prediction method combined
AbstractList The invention relates to a working condition monitoring and fault early warning method for a coal mine frequency conversion local ventilator, which comprises fault diagnosis and fault early warning, and is used for researching the monitoring, diagnosis and early warning of the running state of a mine main ventilator. By analyzing common fault mechanisms and characteristics of the mine main ventilator, a mine main ventilator equipment operation state monitoring scheme is formulated, and on the basis of a traditional BP neural network, a BP algorithm is optimized by using a particle swarm optimization (PSO) algorithm, so that the accuracy of fault diagnosis is improved. In motor fault type identification through PSO-BPNN, the algorithm convergence speed and the diagnosis precision are obviously better than those of BPNN, and the method can better adapt to motor fault diagnosis under actual working conditions. Through simulation experiment analysis, it can be obtained that the PSO-BPNN prediction method combined
Author ZHANG XUHUI
WAN XIANG
SHANG XINMANG
SHI GANG
WANG MIN
SONG JINQUAN
GUO WENFANG
XUE XUSHENG
Author_xml – fullname: WAN XIANG
– fullname: SHANG XINMANG
– fullname: WANG MIN
– fullname: SONG JINQUAN
– fullname: SHI GANG
– fullname: GUO WENFANG
– fullname: XUE XUSHENG
– fullname: ZHANG XUHUI
BookMark eNqNjD0KwkAQhbfQwr87jAewCFHBUoJiZSVYhmEz0cXNTJxsIrm9u-ABrB58771vbiYsTDMjd9GX4wdY4coFJwyNsAuiCSJXUGPvAxCqH-GDyok3FJ4SK9H4Qw-NY4Ja6d0T2zG5BtIuybzY2A_EwXmM1qWZ1ug7Wv1yYdbn0624bKiVkroWLTGFsrhm2TbLD_t8d8z_2XwB641FoQ
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
DocumentTitleAlternate 煤矿变频局部通风机工况监测与故障预警方法
ExternalDocumentID CN114139635A
GroupedDBID EVB
ID FETCH-epo_espacenet_CN114139635A3
IEDL.DBID EVB
IngestDate Fri Oct 25 05:41:28 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_CN114139635A3
Notes Application Number: CN202111469203
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220304&DB=EPODOC&CC=CN&NR=114139635A
ParticipantIDs epo_espacenet_CN114139635A
PublicationCentury 2000
PublicationDate 20220304
PublicationDateYYYYMMDD 2022-03-04
PublicationDate_xml – month: 03
  year: 2022
  text: 20220304
  day: 04
PublicationDecade 2020
PublicationYear 2022
RelatedCompanies XIXIAN'AN RELOADING KOREAN COAL MINE MACHINERY LIMITED COMPANY
XI'AN SCIENCE AND TECHNOLOGY UNIVERSITY
RelatedCompanies_xml – name: XI'AN SCIENCE AND TECHNOLOGY UNIVERSITY
– name: XIXIAN'AN RELOADING KOREAN COAL MINE MACHINERY LIMITED COMPANY
Score 3.5146377
Snippet The invention relates to a working condition monitoring and fault early warning method for a coal mine frequency conversion local ventilator, which comprises...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
Title Working condition monitoring and fault early warning method for coal mine frequency conversion local ventilator
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220304&DB=EPODOC&locale=&CC=CN&NR=114139635A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4gPm-KGsVHxsT01piW8uihMbKFEBMKMWi4EdruBg0UAiVEf72zQxEvet2m2-wkX-ebmW9mAe4jK5JKWq6pIlU1HWVLM3TL0rStCkGv7NjVWDc4t4NK69V57pf7OfjY9MLwnNAVD0ckREWE95T_17NtEstnbeXiIXynpeljs-f5RhYd27au9Bl-3Wt0O35HGEJ4IjCCF49oP3Ed8q5PO7BLNLrKQdtbXXelzH67lOYx7HVptyQ9gdzXqACHYnPzWgEO2lnBuwD7rNCMFrSYoXBxCtMsw40Uy8YsucIJQ1Pn6HCYxKiGy3GKUg8vxtU694Hru6KRSCq9NxzjhD6Aar6WUn8iy885d4bs35CFkGMdk5_BXbPREy2TzjD4MdhABNvjls4hn0wTeQFoKYqcyfpRJSYeonQFsObWbDe0alKWbHUJxb_3Kf738AqOtPFZm-VcQz6dL-UNOes0vGUrfwMAA5vF
link.rule.ids 230,309,783,888,25577,76883
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4gPvCmKFF8rYnprTEtBdpDY2QLQYVCDBpuhLa7UQOFQAnRX-_sUMSLXrfpbnY2387rm1mAm9AIhRSGo8tQVnVLmkIPnLLQTaOC0CtbZjVSBc5tv9J8sR775X4GPta1MNQndEnNERFRIeI9oft6ugliecStnN8G7zg0uWv0XE9LvWPTVJk-zau59W7H63CNc5f7mv_sotmPtg5q1_st2EYT2yZX6bWmqlKmv1VK4wB2ujhbnBxC5ustDzm-fnktD3vtNOGdh11iaIZzHExROD-CSRrhZujLRkS5YmOCporRsWEcMTlcjBImVPNitlzFPtjqrWiGRir-NxyxMS7A5GxFpf5kRD-n2Bkj_caICDlSPvkxXDfqPd7UcQ-DH4ENuL_ZbqkA2XgSixNghkTPGaUfViK0Q6TKANqObTqBYQtRMuUpFP-ep_jfxyvINXvt1qD14D-dwb46COJpWeeQTWYLcYGKOwkuSeLfd4aetQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Working+condition+monitoring+and+fault+early+warning+method+for+coal+mine+frequency+conversion+local+ventilator&rft.inventor=WAN+XIANG&rft.inventor=SHANG+XINMANG&rft.inventor=WANG+MIN&rft.inventor=SONG+JINQUAN&rft.inventor=SHI+GANG&rft.inventor=GUO+WENFANG&rft.inventor=XUE+XUSHENG&rft.inventor=ZHANG+XUHUI&rft.date=2022-03-04&rft.externalDBID=A&rft.externalDocID=CN114139635A