Method for predicting bidding quotation of engineering project through feed-forward full-connection neural network

The invention provides a method for predicting bidding quotation of an engineering project through a feed-forward full-connection neural network. The method comprises the following steps: dividing original data into training data and test data, and standardizing price-limited data in the training da...

Full description

Saved in:
Bibliographic Details
Main Authors XU YUNXIA, ZHAO YANHONG, PAN YANCHAO, LUO ZHI, LIN FEI, TAN ZHUO, HUANG XUETAO, CAI GUIJUN, ZHANG SEN, ZHANG KEFEI
Format Patent
LanguageChinese
English
Published 24.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The invention provides a method for predicting bidding quotation of an engineering project through a feed-forward full-connection neural network. The method comprises the following steps: dividing original data into training data and test data, and standardizing price-limited data in the training data; establishing a feedforward full-connection neural network regression model by taking the project limited price in the training data as input and the project quoted price in the training data as output; selecting k-fold cross validation to evaluate the model to obtain a k-fold cross validation result, and adjusting parameters of the model after each evaluation to re-evaluate; drawing an accuracy rate image, finding inflection points, performing early stopping, and the accuracy rate image is drawn with the round of model training as the abscissa and the k-fold cross validation result in each round as the ordinate; and testing the test data by using the adjusted model, and predicting the quoted price of the actual
AbstractList The invention provides a method for predicting bidding quotation of an engineering project through a feed-forward full-connection neural network. The method comprises the following steps: dividing original data into training data and test data, and standardizing price-limited data in the training data; establishing a feedforward full-connection neural network regression model by taking the project limited price in the training data as input and the project quoted price in the training data as output; selecting k-fold cross validation to evaluate the model to obtain a k-fold cross validation result, and adjusting parameters of the model after each evaluation to re-evaluate; drawing an accuracy rate image, finding inflection points, performing early stopping, and the accuracy rate image is drawn with the round of model training as the abscissa and the k-fold cross validation result in each round as the ordinate; and testing the test data by using the adjusted model, and predicting the quoted price of the actual
Author ZHAO YANHONG
XU YUNXIA
ZHANG SEN
CAI GUIJUN
HUANG XUETAO
TAN ZHUO
PAN YANCHAO
LIN FEI
ZHANG KEFEI
LUO ZHI
Author_xml – fullname: XU YUNXIA
– fullname: ZHAO YANHONG
– fullname: PAN YANCHAO
– fullname: LUO ZHI
– fullname: LIN FEI
– fullname: TAN ZHUO
– fullname: HUANG XUETAO
– fullname: CAI GUIJUN
– fullname: ZHANG SEN
– fullname: ZHANG KEFEI
BookMark eNqNjDsOwjAQBV1Awe8O5gApkiAEJYpANFDRR8ZeJwZr12xs5fo4EgegmuLNm6WYISEsBN8g9mSkJZaBwTgdHXby6YyZ-EkUVXSEkqwE7BwC8DQEphfoKGPPlLpeWgBT5MioOMeS94UmxGxMX4TEymfEkfi9FnOr_ACbH1diezk_mmsBgVoYgtKQzba5l2VdHQ_7aneq_3G-1GxG1A
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
DocumentTitleAlternate 前馈全连接神经网络预测工程项目投标报价的方法
ExternalDocumentID CN113298624A
GroupedDBID EVB
ID FETCH-epo_espacenet_CN113298624A3
IEDL.DBID EVB
IngestDate Fri Jul 19 14:32:44 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_CN113298624A3
Notes Application Number: CN202110686641
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210824&DB=EPODOC&CC=CN&NR=113298624A
ParticipantIDs epo_espacenet_CN113298624A
PublicationCentury 2000
PublicationDate 20210824
PublicationDateYYYYMMDD 2021-08-24
PublicationDate_xml – month: 08
  year: 2021
  text: 20210824
  day: 24
PublicationDecade 2020
PublicationYear 2021
RelatedCompanies TUNNEL TANG TECHNOLOGY CO., LTD
RelatedCompanies_xml – name: TUNNEL TANG TECHNOLOGY CO., LTD
Score 3.4768493
Snippet The invention provides a method for predicting bidding quotation of an engineering project through a feed-forward full-connection neural network. The method...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
Title Method for predicting bidding quotation of engineering project through feed-forward full-connection neural network
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210824&DB=EPODOC&locale=&CC=CN&NR=113298624A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_m_HzTqej8IIL0LejWdK0PRVy6MYR1Q6bsbTRtwybS1rZD8K_3Ejvniz4V0nKQS653ufzudwDXuHE7zAoEDVqhpEwyRoUjLSptS2L4YTq2ZmIa-p3BM3ucWtMavK5qYTRP6IcmR0SLCtHeS_2_ztZJLE9jK4sbscCh9L4_cT2jOh3j-cVpM8Prur3xyBtxg3OX-4b_5OqG6qoY4mEDNjGMtpU19F66qiol--1S-vuwNUZpSXkAtc95A3b5qvNaA3aG1YV3A7Y1QjMscLCywuIQ8qFu-0ww3iRZrr5V2GUiFpFyROR9mX7fr5NUknjNN0iqrAupevMQiZ6LohAFnCUqD09DBXvRlQ5EEV0Gb_jQMPEjuOr3JnxAcRqzH53NuL-esXkM9SRN4hMg7C4KWGgLp4XLYgZCRLGMpIULFkszsG9Pofm3nOZ_L89gT-lfpVvb7BzqZb6ML9Bfl-JSK_oLDHadZA
link.rule.ids 230,309,783,888,25576,76876
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8gfuCbokTxqyZmb43COjYfFiMdBJUNYtDwRtZtjRjDEEZM_Ou91iG-6NOSbrmkvd7uev3d7wAucOM2mBUKGtYiSZlkjApHWlTalsTww3RszcTkB43OE7sfWsMCvC5rYTRP6IcmR0SLitDeM_2_nq6SWJ7GVs4vxRiH0pv2wPWM_HSM5xenzgyv6bb6Pa_HDc5dHhjBo6sbqqtiiNs1WMcQ21bW0HpuqqqU6W-X0t6BjT5Km2S7UPh8KUOJLzuvlWHLzy-8y7CpEZrRHAdzK5zvwczXbZ8JxptkOlPfKuwyEeNYOSLyvki_79dJKkmy4hskedaF5L15iETPRVGIAs4SlYenkYK96EoHooguwzd8aJj4Ppy3WwPeoTiN0c-ajXiwmrFZgeIknSQHQNh1HLLIFk4N1WKGQsSJjKWFCkukGdpXh1D9W071v5dnUOoM_O6oexc8HMG20oVKvdbZMRSz2SI5Qd-diVO96F-bqqBX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Method+for+predicting+bidding+quotation+of+engineering+project+through+feed-forward+full-connection+neural+network&rft.inventor=XU+YUNXIA&rft.inventor=ZHAO+YANHONG&rft.inventor=PAN+YANCHAO&rft.inventor=LUO+ZHI&rft.inventor=LIN+FEI&rft.inventor=TAN+ZHUO&rft.inventor=HUANG+XUETAO&rft.inventor=CAI+GUIJUN&rft.inventor=ZHANG+SEN&rft.inventor=ZHANG+KEFEI&rft.date=2021-08-24&rft.externalDBID=A&rft.externalDocID=CN113298624A