Method for predicting bidding quotation of engineering project through feed-forward full-connection neural network
The invention provides a method for predicting bidding quotation of an engineering project through a feed-forward full-connection neural network. The method comprises the following steps: dividing original data into training data and test data, and standardizing price-limited data in the training da...
Saved in:
Main Authors | , , , , , , , , , |
---|---|
Format | Patent |
Language | Chinese English |
Published |
24.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The invention provides a method for predicting bidding quotation of an engineering project through a feed-forward full-connection neural network. The method comprises the following steps: dividing original data into training data and test data, and standardizing price-limited data in the training data; establishing a feedforward full-connection neural network regression model by taking the project limited price in the training data as input and the project quoted price in the training data as output; selecting k-fold cross validation to evaluate the model to obtain a k-fold cross validation result, and adjusting parameters of the model after each evaluation to re-evaluate; drawing an accuracy rate image, finding inflection points, performing early stopping, and the accuracy rate image is drawn with the round of model training as the abscissa and the k-fold cross validation result in each round as the ordinate; and testing the test data by using the adjusted model, and predicting the quoted price of the actual |
---|---|
AbstractList | The invention provides a method for predicting bidding quotation of an engineering project through a feed-forward full-connection neural network. The method comprises the following steps: dividing original data into training data and test data, and standardizing price-limited data in the training data; establishing a feedforward full-connection neural network regression model by taking the project limited price in the training data as input and the project quoted price in the training data as output; selecting k-fold cross validation to evaluate the model to obtain a k-fold cross validation result, and adjusting parameters of the model after each evaluation to re-evaluate; drawing an accuracy rate image, finding inflection points, performing early stopping, and the accuracy rate image is drawn with the round of model training as the abscissa and the k-fold cross validation result in each round as the ordinate; and testing the test data by using the adjusted model, and predicting the quoted price of the actual |
Author | ZHAO YANHONG XU YUNXIA ZHANG SEN CAI GUIJUN HUANG XUETAO TAN ZHUO PAN YANCHAO LIN FEI ZHANG KEFEI LUO ZHI |
Author_xml | – fullname: XU YUNXIA – fullname: ZHAO YANHONG – fullname: PAN YANCHAO – fullname: LUO ZHI – fullname: LIN FEI – fullname: TAN ZHUO – fullname: HUANG XUETAO – fullname: CAI GUIJUN – fullname: ZHANG SEN – fullname: ZHANG KEFEI |
BookMark | eNqNjDsOwjAQBV1Awe8O5gApkiAEJYpANFDRR8ZeJwZr12xs5fo4EgegmuLNm6WYISEsBN8g9mSkJZaBwTgdHXby6YyZ-EkUVXSEkqwE7BwC8DQEphfoKGPPlLpeWgBT5MioOMeS94UmxGxMX4TEymfEkfi9FnOr_ACbH1diezk_mmsBgVoYgtKQzba5l2VdHQ_7aneq_3G-1GxG1A |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
DocumentTitleAlternate | 前馈全连接神经网络预测工程项目投标报价的方法 |
ExternalDocumentID | CN113298624A |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_CN113298624A3 |
IEDL.DBID | EVB |
IngestDate | Fri Jul 19 14:32:44 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | Chinese English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_CN113298624A3 |
Notes | Application Number: CN202110686641 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210824&DB=EPODOC&CC=CN&NR=113298624A |
ParticipantIDs | epo_espacenet_CN113298624A |
PublicationCentury | 2000 |
PublicationDate | 20210824 |
PublicationDateYYYYMMDD | 2021-08-24 |
PublicationDate_xml | – month: 08 year: 2021 text: 20210824 day: 24 |
PublicationDecade | 2020 |
PublicationYear | 2021 |
RelatedCompanies | TUNNEL TANG TECHNOLOGY CO., LTD |
RelatedCompanies_xml | – name: TUNNEL TANG TECHNOLOGY CO., LTD |
Score | 3.4768493 |
Snippet | The invention provides a method for predicting bidding quotation of an engineering project through a feed-forward full-connection neural network. The method... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
Title | Method for predicting bidding quotation of engineering project through feed-forward full-connection neural network |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210824&DB=EPODOC&locale=&CC=CN&NR=113298624A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_m_HzTqej8IIL0LejWdK0PRVy6MYR1Q6bsbTRtwybS1rZD8K_3Ejvniz4V0nKQS653ufzudwDXuHE7zAoEDVqhpEwyRoUjLSptS2L4YTq2ZmIa-p3BM3ucWtMavK5qYTRP6IcmR0SLCtHeS_2_ztZJLE9jK4sbscCh9L4_cT2jOh3j-cVpM8Prur3xyBtxg3OX-4b_5OqG6qoY4mEDNjGMtpU19F66qiol--1S-vuwNUZpSXkAtc95A3b5qvNaA3aG1YV3A7Y1QjMscLCywuIQ8qFu-0ww3iRZrr5V2GUiFpFyROR9mX7fr5NUknjNN0iqrAupevMQiZ6LohAFnCUqD09DBXvRlQ5EEV0Gb_jQMPEjuOr3JnxAcRqzH53NuL-esXkM9SRN4hMg7C4KWGgLp4XLYgZCRLGMpIULFkszsG9Pofm3nOZ_L89gT-lfpVvb7BzqZb6ML9Bfl-JSK_oLDHadZA |
link.rule.ids | 230,309,783,888,25576,76876 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8gfuCbokTxqyZmb43COjYfFiMdBJUNYtDwRtZtjRjDEEZM_Ou91iG-6NOSbrmkvd7uev3d7wAucOM2mBUKGtYiSZlkjApHWlTalsTww3RszcTkB43OE7sfWsMCvC5rYTRP6IcmR0SLitDeM_2_nq6SWJ7GVs4vxRiH0pv2wPWM_HSM5xenzgyv6bb6Pa_HDc5dHhjBo6sbqqtiiNs1WMcQ21bW0HpuqqqU6W-X0t6BjT5Km2S7UPh8KUOJLzuvlWHLzy-8y7CpEZrRHAdzK5zvwczXbZ8JxptkOlPfKuwyEeNYOSLyvki_79dJKkmy4hskedaF5L15iETPRVGIAs4SlYenkYK96EoHooguwzd8aJj4Ppy3WwPeoTiN0c-ajXiwmrFZgeIknSQHQNh1HLLIFk4N1WKGQsSJjKWFCkukGdpXh1D9W071v5dnUOoM_O6oexc8HMG20oVKvdbZMRSz2SI5Qd-diVO96F-bqqBX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=Method+for+predicting+bidding+quotation+of+engineering+project+through+feed-forward+full-connection+neural+network&rft.inventor=XU+YUNXIA&rft.inventor=ZHAO+YANHONG&rft.inventor=PAN+YANCHAO&rft.inventor=LUO+ZHI&rft.inventor=LIN+FEI&rft.inventor=TAN+ZHUO&rft.inventor=HUANG+XUETAO&rft.inventor=CAI+GUIJUN&rft.inventor=ZHANG+SEN&rft.inventor=ZHANG+KEFEI&rft.date=2021-08-24&rft.externalDBID=A&rft.externalDocID=CN113298624A |